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ABSTRACT
While distributed memory systems have shaped the field of dis-
tributed systems for decades, the demand for many-core shared
memory resources is increasing. Symmetric Multiprocessor Sys-
tems (SMPs) have become increasingly important recently among
a wide array of disciplines, ranging from Bioinformatics to astro-
physics, and beyond. With the increase in big data computing, the
size and scope of traditional commodity server systems is often
outpaced. While some big data applications can be mapped to dis-
tributed memory systems found through many cluster and cloud
technologies today, this effort represents a large barrier of entry that
some projects cannot cross. Shared memory SMP systems look to
effectively and efficiently fill this niche within distributed systems
by providing high throughput and performance with minimized de-
velopment effort, as the computing environment often represents
what many researchers are already familiar with.

In this paper, we look at the use of two common shared memory
systems, the ScaleMP vSMP virtualized SMP deployment at Indi-
ana University, and the SGI UV architecture deployed at Univer-
sity of Arizona. While both systems are notably different in their
design, their potential impact on computing are remarkably sim-
ilar. As such, we look to compare each system first under a set
of OpenMP threaded benchmarks via the SPEC group, and follow
up with our experience using each machine for Trinity de-novo as-
sembly. We find both SMP systems are well suited to support var-
ious big data applications, with the newer vSMP deployment often
slightly faster, however certain caveats and performance considera-
tions are necessary when considering such large many-core shared
memory systems.

1. INTRODUCTION
Since the advent of the personal computer, industry and academia
both have desired a bigger, more powerful single computing en-
vironment for a wide array of computational requirements. This

can be seen most obviously in Moore’s Law and the ever-increase
transistor count, but also the upward trend in main memory avail-
ability. However, there are natural limits to how large individ-
ual systems can grow, both in size and complexity. Today’s lat-
est Haswell CPUs can support 8 x 32GB DIMMS, or 256GB per
socket. While this is an impressive feat achieved by hardware man-
ufactures, the reality is the computational tasks at hand today can
require a far more computational power that is only found when
using distributed systems.

In the past few decades, distributed memory computing systems
have offered the best solution for the growing computational re-
quirements. Distributed memory systems involve building clusters,
supercomputers, grids, and clouds [1] that piece together many in-
dividual systems together with high speed, low latency intercon-
nects. The Top500 list [2] illustrates how almost all of the fastest
computing systems today are clusters and supercomputers. How-
ever, using distributed shared memory systems often involve push-
ing the complexity of the architecture and challenges with paral-
lelism directly to the software developers. While this is clearly not
an insurmountable feat for some efforts, developing applications
on distributed memory systems do represent a significant barrier of
entry to parallel computing that can be challenging for smaller or
niche projects to overcome.

In practice, there is the desire to treat a set of distributed resources
as if it was a single, large entity, and leave the complexity of task
orchestration to the system itself. Symmetric Multi-Processing sys-
tems, or SMP, represents the realization for this desire, whereby
there is centralized shared memory under a single unified operat-
ing system with two or more processing units [3]. While today’s
SMP machines are actually multiple distributed systems with some
layer of abstraction, they can be used as a single compute resource
similar to a giant server. This usage model fits well with many data
scientists who aren’t used to or familiar with utilizing distributed
architectures.

With the advent of big data within distributed systems and high
performance computing [4], many new computing challenges are
coming to the field. However, many efforts are not able to take ad-
vantage of distributed memory systems, for a number of reasons.
This could be because the code-set is outdated, the application is
proprietary, the source code itself is unavailable, or the necessary
technical skill is not available to the research community. Perhaps
the large amount of development time it would take to rewrite an



application far exceeds the application’s potential utility within a
given project. Here we expect SMP systems to fill this gap by
providing a many core and large memory system across a single
unified OS, allowing for many big data applications to run either
unmodified or with only minor code changes. However, the ability
for these SMP systems to handle such big data workloads remains
relatively unknown.

This paper is constructed as follows: First, explore the usage and
variance in many-core SMP systems. Next, we show two different
deployments at Indiana University and University of Arizona that
represent two common but different SMP systems today. Then, we
will look at evaluating each system in two different ways. First
we will evaluate thread level parallelism with the SPEC OpenMP
benchmark suite, and experiment with running Trinity, a de-novo
genome assembly application that requires a large memory address-
ing space. Finally, we will conclude with a discussion of each
machine and the relevance to shared memory systems within the
computing community.

2. SMP MACHINES
While the use cases for SMP machines can vary greatly, today there
generally exists two major use cases for SMPs.

1. Thread Level Parallelism- Where the application can eas-
ily require or leverage more threads than what is commonly
available from a single computing resource. threading mech-
anisms include OpenMP, Cilk, and Pthread based applica-
tions, among others.

2. Large Memory Utilization - Where the amount of main mem-
ory needed for a given large computation can be more than
what a single system can support. This includes large ge-
nomic assembly applications, or in-memory database sys-
tems.

The first major use-case is large shared memory SMP systems is
to support thread-level parallelism to scale beyond a single node.
Often, thread level parallelism is either already available or eas-
ily obtainable with relatively minor changes to the codebase, es-
pecially when compared to the changes necessary for distributed
memory solutions. As such, many threaded and OpenMP appli-
cations are easily created. In fact, application threading has be-
come commonlace within many software systems, especially as
multi-core sysetems have become commonplace in the past decade.
However, this only allows small scaling within a single physical
machine. With SMP, threads can theoretically scale across many
distributed CPUs (hundreds or thousands depending on the deploy-
ment) with run-time environment changes. This effectively allows
for OpenMP, Pthreads, and other types of multi-threaded applica-
tions to obtain mid-level HPC performance at relatively little cost,
both in terms of physical resources and software development ef-
forts.

The second and potentially more important use case for such an
infrastructure is to support large memory applications. In many
cases, fitting data directly into main memory is either impossible
or infeasible on a single system, and re-writing applications from
scratch to take advantage of distributed memory tools like MPI may
be a far greater undertaking than a project is able to tackle. This
could be due to development costs, licensing issues, or even the
relatively little gains that would be achieved by traditional HPC

solutions. Furthermore one could treat main memory as a tertiary
storage system, in order to speed up existing database access, po-
tentially by many orders of magnitude [5]. As such, using large
SMP machines can simply these use cases by allowing for a global
memory address space that spans across all nodes in the deploy-
ment without any user action or input. This makes large database
applications, complicated in-memory computations, or large scale
sparse memory search applications all well suited for deployment
in such systems.

Cache Coherency [6] is a fundamental component of SMP systems.
With any SMP, each processor or core maintains a cache of the lo-
cal main memory. This is done primarily due to the fact that L1
and L2 cache speeds can be an order of magnitude faster in access
times compared to main memory. However, with an SMP system
it is possible to have many copies of a single memory, resulting
in a problematic disparity between caches. Thus, each SMP must
ensure that changes are propagated throughout the entire system as
quickly as possible. There are a few coherency mechanisms that
are commonly used: Directory based [7], Snooping [8], and Snarf-
ing [9]. While all models work, they usually present various trade-
offs between latency, bandwidth utilization, and scalability [10].
While this is an active and ongoing area of research, the underly-
ing mechanisms of Cache Coherence are beyond the scope of this
paper.

Within today’s SMP options, there are two shared memory systems
that have entered the mainstream market: the ScaleMP vSMP plat-
form and the SGI Ultraviolet (UV) systems.

2.1 ScaleMP vSMP
ScaleMP provides a novel solution for creating virtualized high
performance SMP systems. The vSMP platform aggregates many
commodity x86 systems, such as a classical cluster, into a single
virtualized system [11]. From the user and administrative perspec-
tives, only a single, large system exists in which a patched Linux
OS is deployed, usually RedHat Linux. With enough underlying
hardware, this system can incorporate 128 nodes, scaling to 1024
processors (32786 cores) and 2PB of shared memory, all under just
one OS.

ScaleMP’s vSMP foundation software provides the backbone for
producing a large shared memory system. By using a master node
and multiple slave nodes, it can build a single virtual SMP ma-
chine across many distributed nodes, providing a single OS and
accompanying environment. With the OS spanning multiple dis-
crete compute resources, many of the inherent challenges of dis-
tributed systems faced by users today are greatly simplified or re-
moved entirely. Problems such as data locality, memory manage-
ment, CPU organization, etc can be left up to the ScaleMP vSMP,
the OS and kernel scheduling, and vSMP support tools. This al-
lows the programmer to easily work on a single many-core system
by leveraging various threading models and focus on the computa-
tional challenge at hand, instead of spending time on the details of
parallelization common with MPP systems.

ScaleMP creates this unified vSMP system by leveraging a high
performance, low latency interconnect; InfiniBand. This network
allows for Remote Direct Memory Access (RDMA) to be handled
at the virtualization layer, and an OS via the master node is pre-
sented with a large shared memory system, even though most of
the cores and memory are actually available from alternate slave
nodes within the underlying cluster. Furthermore, vSMP lever-



ages this network to ensure cache coherency between individual
nodes through their proprietary coherenecy algorithms. This in-
cludes block-level concurrency as well as advanced caching tech-
niques which minimize InfiniBand latency and redundant memory
operations. Furthermore, the system unifies all PCI and I/O devices
into the single OS, providing a large I/O device pool. This is espe-
cially useful when looking to leverage multiple accelerators within
a single system, such as Intel Xeon PHIs or Nvidia Tesla GPUs,
which are now supported on vSMP. For example, if you have a
16 node cluster each with 2 GPUs, you can effectively harness 32
GPUs directly fom a single application deployed on the SMP OS.

Within ScaleMP vSMP, there are two fundamentally different modes
that the system can be configured, system expansion mode or mem-
ory expansion mode. This configuration choice can have a drastic
impact on the application being used, and must be made carefully.
While it is easy to re-provision the system in either mode, such an
operation requires several minutes of downtown as all master and
slave nodes need to be rebooted and respective boot images dis-
tributed.

System Expansion mode in Figure 1 is specifically calibrated for
compute intensive applications, whereby all the available cores are
desired. Here, all the CPU and memory resources are consolidated
into a single virtual system, whereby the OS can be provisioned on
top. From the perspective of the OS, up to 32 thousand cores and
2PB of memory could be available, depending on the configuration.

Figure 1: vSMP System Expansion Mode

Memory Expansion mode illustrated in Figure 2 is designed for
use with applications requiring only a large amount of main mem-
ory. In this mode, only the master node’s CPU and I/O devices
are made available to the OS, yet all the slave’s system memory is
available. From the OS perspective, it looks like a normal com-
modity server with up to 2PB of main memory attached. While
large memory applications can be run in system expansion mode,
the memory expansion mode offers more efficient and simplified
memory utilization through RDMA, leading to better performance
and availability.

2.2 SGI UV Altix
SGI Corporation has been developing memory intensive systems
for over 20 years. Their UV advanced symmetric multiprocessing

Figure 2: vSMP Memory Expansion Mode

(SMP) systems utilize NUMAlink interconnect technology to de-
liver scale-up performance within a single system. The SGI UV
architecture can date back to the original Stanford DASH super-
computing design from the late 1980s [12]. These systems are
frequently found in the high performance compute (HPC) environ-
ment for their ability to handle jobs that are too large for standard
compute nodes, with comparable levels of performance even to dis-
tributed memory architectures [13].

SGI’s UV architecture creates a global shared memory system us-
ing their own SGI NUMAlink interconnect [14]. From a physical
standpoint, these systems are configured in a blade configuration
with the specialized NUMAlink, a custom ASIC developed by SGI
based on Intel Quick Path Interconnect (QPI). NUMAlink itself is
made up of 4 components. A Global Register Unit expands cache
coherency between blades, an Active Memory Unit that supports
atomic memory operations, the Intel QPI processor interface that
lets the ASIC appear as a memory controller, and the actual inter-
connect itself for inter-node communication. From here, the NU-
MAlink protocol runs atop the hardware and provides the cache
coherent global shared memory system to a single OS. This pro-
tocol also allows for an MPI offload engine which offloads MPI
operations to the NUMAlink ASIC instead of the CPU to speed up
MPI performance within the system.

While the SGI system used in this manuscript refers to the UV1000
deployed in 2011 by the University of Arizona, SGI has updated
their UV offerings. The latest model from SGI is the UV3000
which scales from 4 to 256 CPU sockets with up to 64TB of shared
memory presented as a single system.

3. LARGE MEMORY SMP DEPLOYMENTS
In this manuscript we investigate two SMP systems in detail. While
these systems are very different in many aspects, they do share
many similarities. While this is not meant as an apples-to-apples
comparison (as such a comparison isn’t realistically possible), we
do hope to illustrate the nuances with each shared memory archi-
tecture in as much detail as possible.

3.1 Echo at IU FutureSystems
Initially, ScaleMP vSMP was tested using a subset of the india su-
percomputer within the NSF FutureGrid project [15]. This con-



ScaleMP SGI UV
Nodes 16 16
NUMA Nodes 32 32
Cores 192 256
System RAM 5.6 TB (6.0 TB) 1.28 TB
CPU Type Intel x86_64 Intel x86_64
CPU Model Xeon E5-2640 Xeon E7-8837
CPU Family SandyBridge Westmere
CPU Base Hz 2.5 Ghz 2.66 Ghz
CPU Max Hz 3.0 Ghz 2.8 Ghz
CPU Cores 6 8
Cache Size 15 MB 24 MB
Interconnect QDR InfiniBand NUMAlink 5
IC Bandwidth 40 Gbps 15 Gbps
OS Type RedHat EL6 Linux RedHat EL6 Linux
OS Kernel 2.6.32-220.23.1.vSMP 2.6.32-358.6.2.hz100

SMP Version vSMP 6.0.135.46 SGI Accelerate 1.6
SGI Foundation 2.8

Compiler Intel 2013.sp1.2.144 Intel 2013.5.192

Table 1: Hardware Configuration

sisted of 16 nodes removed from normal HPC usage, creating a
128 core single system with 384GB memory (3̃20GB usable). Ini-
tial testing revealed that OpenMP and multi-threaded performance
was relatively good, and traditional HPC workloads such as HPL
and the adjoining HPCC benchmarks performed relatively well, as
seen in Figure 3. Using 16 Nahelem based nodes, we found MPI
efficiency to be 82.4% of peak performance. When considering
this is a virtualized SMP machine, we found to be an acceptable
level of overhead for many use cases. However, MPI jobs is not
the primary function of the SMP machine, and more permanent
deployment with a larger memory footprint was desired.

Figure 3: HPL 128 node exploratory performance

Echo, the latest usage of ScaleMP’s vSMP Foundation deployment
at Indiana University (IU), provides a significant jump in compu-
tational abilities for shared memory processing in as FutureGrid
transisitions to FutureSystems. The deployment provides 16 nodes,
each with 2 Xeon Sandy-Bridge E5-2640 CPUs at 2.5Ghz and 3284Gb
of DDR3 RAM, as described in Table 3. This creates a system total
of 192 cores (without Hyperthreading) and 5.6TB of usable main
memory, with 470Gb of main memory reserved for vSMP cache.
Each node is connected using Mellanox Connect-X3 InfiniBand
VPI adapters with QDR 40Gbs links across a Voltaire QDR Infini-

Band switch. RedHat Enterprise Linux 6.5 is deployed as the single
OS, and is managed in the echo queue as part of the larger Moab/-
Torque HPC queuing system at IU. The Echo system is loaded with
vSMP foundation 6.0.135.46, which was found to be stable across
all 16 nodes for a period over 1 year.

3.2 UV at Arizona
The UV system at University of Arizona (UofA) represents a com-
mon offering from SGI, and serves the many big data and large
memory computing tasks at UoA. This UV1000, which is also de-
scribed in Table 3 has eight-core Intel Xeon e7-8837 Westmere pro-
cessors and a mix of 2GB and 8GB DIMMs. There are 58 dual
socket compute nodes for a total of 928 cores, and 2.77TB of us-
able memory. Each node is connected with the NUMAlink 5 in-
terconnect system, a proprietary fiber optic interconnect provided
by SGI with a line bandwidth of over 15 Gbs (two 7.5Gbs unidi-
rectional links). The UV system at UofA is rated at 18.90 TFLOPs
and is installed with Red Hat 6.0, and is controlled by the Altair
PBS Pro scheduling system under the smp_standard queue. For
the purposes of this study, the evaluation jobs were run as part of
the normal operation of the system. There was not exclusive access
provided over the regular workload; however, PBS Pro keeps one
job from interfering with the performance of another.

4. EXPERIMENTAL SETUP
4.1 SPEC OpenMP
The Standard Performance Evaluation Corporation (SPEC) is a ma-
jor standard for evaluation of benchmarking systems. SPEC has
several different testing components that can be utilized to bench-
mark a system. For our benchmarking comparison we will use the
SPEC OMP2012 [16] because it appears to represent a vast array of
new and emerging parallel applications while simultaneously pro-
viding a comparison to other SPEC benchmarks. SPEC OMP con-
tinues the SPEC tradition of giving HPC users the most objective
and representative benchmark suite for measuring the performance
of SMP (shared memory multi-processor) systems.

The SPEC OMP2012 benchmark suite consists of a number of real
world applications, all implemented using OpenMP. These appli-
cations include applications in molecular dynamics, computational
fluid dynamics, sequence alignment, LU factorization, image pro-
cessing, and various other simulators and solvers. These applica-
tions, originally derived from the SPEC OMP2001 suite, have mul-
tiple workload levels to characterize the performance of medium
and large sized systems. Together, these applications are able to
place a heavy demand on both systems and memory, key com-
ponents of any SMP machine. The SPEC OMP2012 suite uses a
reference system, a Sun FireX4140 with two AMD Opteron 2384
processors (quad core) to give a base score of 1 for each run. As
such, all scores listed are based on the performance of this system,
not a per-core scaling metric.

With deploying OMP2012 on the Echo ScaleMP system at Fu-
tureSystems, we used the vSMP System Expansion mode. This
allows for access to all 192 cores, to give the maximum OpenMP
performance. For the SGI UV at UoA, we leveraged a subsystem
with 240 available cores, however all benchmarks were capped at
192 cores (24 NUMA nodes). For the vSMP, the KMP_AFFINITY
directive was used to pin each thread on its own core. For the SGI
UV, the dplace SGI tool was used to handle OpenMP thread place-
ment. Each OMP2012 benchmark was run a total of 3 times with
the full training sets, as per the run-time guidelines mandated for all



reportable results within SPEC. 1 Again, while this is not an apples-
to-apples comparison, we hope to make the results as relatable as
possible. :

4.2 Trinity De-novo Assembly
A transcriptome is the set of all RNA molecules that are transcribed
in a cell or population of cells. Transcriptomes can help to identify
genes, alternative splicing in genes, and differential expression of
genes in distinct cell populations. High volume RNA Sequenc-
ing (RNA-Seq) produces many millions of short RNA sequence
reads. The de novo assembly of these reads into a transcriptome is
a computationally intensive task. Typically these huge data sets are
down-sampled to produce a smaller data set that can be assembled
with commonly available computing systems. In this experiment,
we assembled a full RNASeq data set of 370 million reads using
the Trinity assembly package. This effort represents a real world
big data problem in Bioinformatics around the world today.

The Trinity software, developed at the Broad Institute and the He-
brew University of Jerusalem, represents a novel method for the
efficient and robust de novo reconstruction of transcriptomes from
RNA-seq data. Trinity combines three independent software mod-
ules: Inchworm, Chrysalis, and Butterfly, applied sequentially to
process large volumes of RNA-seq reads [17, 18].

When using Trinity, we created two different Trinity jobs to test the
system. Both data sets use the Crangon crangon species (Shimp)
transcriptome, gathered from an Illumina RNAseq dataset. the
reads are around 100bp in length, and was trimmed to approxi-
mately a 50x coverage using the khmer normalization tool. In Job
1, only the R1 reads are used, whereas in Job 2, assembly was per-
formed using both the R1 and R2 reads.

Because Trinity is mainly a memory intensive application, espe-
cially given our big data set, the vSMP system was set up this time
in Memory Expansion mode. This mode allows for a performance
boost over system expansion due to the vSMP RDMA and caching
techniques.

5. RESULTS
The goal of this manuscript is to effectively compare and contrast
the ScaleMP vSMP deployment at IU, and the SGI UV1000 de-
ployment at UofA, specifically for use with OpenMP threaded and
big-data applications. The first set of results represent the SPEC
OpenMP benchmark suite, and the second set of results relate to
the Trinity runs, both described in Section 4.

5.1 OpenMP
In Figure 4, we see the SPEC OpenMP 2012 benchmark suite re-
sults immediately paint a very complex pictures when it comes to
the performance.. In part, this is due to the 14 different applications
incorporated in the OMP2012 suite, each with vastly different at-
tributes. The y axis represents the SPEC score retrieved for each
individual benchmark, which is a ratio of the benchmark run-time
in relation to the SPEC reference system. For clarity, a spec score
of 5 illustrates how that particular application ran 5 times faster
then the reference system.
1The current runtime data results for SPEC OMP2012 on both the
ScaleMP vSMP at IU and the SGI UV 100 at UofA are have been
submitted and are currently under review with the SPEC consor-
tium. We expect this data to be published online at the same time
as the manuscript is ready for release

From Figure 4, we can see with the variance in benchmark SPEC
scores that some benchmarks inherently scale better than others.
For instance, the 352.nab, 362.fma3d, 370.mgrid, and 371.applu331
exhibit signs of weak scaling in both the vSMP and UV systems.
This is largely due to the inherent implementation of each bench-
marks’ algorithm when running in such SMP environments. How-
ever, some applications such as 350.md, 358.botsalgn, 372.smithwa,
and 376.kdtree, scale well on both systems, reaching up to a 53.6
SPEC score for the UV. This shows that the SMP machines are
able to provide large speedups with OpenMP applications, however
not all OpenMP applications will automatically scale well. This is
the case for many parallel applications independent of implemen-
tation, as Ahmdahl’s Law [19] impacts parallel applications differ-
ently, not to mention the way in which each algorithm is imple-
mented can directly impact scalability. This is especially true with
OpenMP, which leaves many parallelization details to the compiler
and run-time environment, incontrast to the fine-grained control of
the developer as with MPI applications.

As a major goal of this manuscript is to compare these differing
SMP systems, we must dive further into the SPEC OMP2012 re-
sults. The total SPEC base score for the ScaleMP vSMP and SGI
UV1000 is 10.4 and 7.01, respectively for 192 core runs. This score
is a geometric mean of the 14 normalized SPEC ratios, and give a
quick summary of each machine’s overall performance. While this
may be a quick way to judge performance and assume the VSMP is
faster, there is more to the story, as SMP machines incorporate com-
plex non-deterministic architectures. As such, we look to group the
benchmarks based on the two system’s performance to better un-
derstand each SMP system’s behavior.

Of the 14 total benchmarks within the SPEC OMP2012 suite, 9
benchmarks were relatively comparable between the two SMP sys-
tems, with the vSMP system performing better in 5 of the 9 bench-
marks. If we consider just these 9 benchmarks and calculate the
geometric mean of the SPEC scores (the same function as the total
SPEC base score), the vSMP gets a score of 7.65 compared to the
UV’s score of 7.44. As both benchmarks were run with 192 cores,
this indicates these benchmarks are largely CPU bound and relative
to core count and performance.

There were some benchmarks that showed drastic difference be-
tween the two systems. The vSMP system significantly outper-
formed the UV in 4 benchmarks in particular, 351.bwaves, 360.ilbdc,
363.swim, and 370.mgrid331, where the vSMP was at least al-
most double the speed of the UV. The worst case was 351.bwaves,
where the vSMP was 12.8 times faster than the UV. In contrast,
the UV1000 at UofA significantly outperformed the vSMP in 1
benchmark, the 372.smithwa, where the UV scored a 53.6 score
to the vSMP’s 19.3. Here, the UV is 2.7 times faster for the Smith-
Waterman benchmark, an algorithm commonly implemented as BLAST
alignment [20]. As this benchmark has a particularly small mem-
ory footprint, it seems that the UV is able to take advantage of its
additional cores per socket and larger cache to provide significantly
better performance compared to the vSMP at IU.

While the initial results point to the ScaleMP vSMP deployment
outperforming the SGI UV at 192 cores, this is not surprising given
the details of each deployment. When considering each system’s
CPU architectures, described in Table 1, we see the vSMP con-
sists of Sandy-Bridge based E5-2640 CPUs in dual-socket 6 core
configuration, with a total of 12 cores per node. This compares to
the SGI UV1000’s system, where each blade uses older Westmere
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Figure 4: SPEC OpenMP 2012 Benchmark suite

based E7-8837 CPUs, also in a dual-socket configuration, except
each socket has 8 cores for a total of 16 cores per UV blade. In
order to compare each CPU’s performance, we can leverage the
SPEC CPU2006 benchmark [21], which provides CPU-intensive
SPEC scores for single node systems. From the SPEC CPU2006 re-
sults [22,23], we find two benchmarks results from Supermicro Inc,
which have identical CPUs and NUMA sockets as our SMP sys-
tems. The Sandy-Bridge E5-2640 reports a score of 46.0, whereas
the Westmere E7-8837 manages a score of 39.3. From this, we can
infer that the Sandy-Bridge CPUs in the ScaleMP are roughly 1.17
times, or 17% faster than the UV’s Westmere CPUs.

If we were to assume this 17% performance improvement inherent
in the CPU architecture of the vSMP carries linearly to the SMP
machines, one can expect the SPEC OMP2012 scores to also ex-
hibit the same difference. However, with total SPEC base scores
of 10.4 and 7.01 for the vSMP and SGI UV, respectively, we can
infer the vSMP is about 1.5 times faster than the UV overall. While
the Sandy-Bridge CPU architecture improvement in the VSMP can
explain some of this performance, there is more to understand.

If we take the 4 benchmarks where the vSMP outperformed the UV,
351.bwaves, 360,ilbdc, 363.swim, and 370.mgrid331, and calculate
the geometric mean the spec scores for each system, we find the
vSMP outplaces the SGI by 5.8 times. This shows there is a very
large difference between the two systems that can occur. Looking at
these 4 benchmarks in more detail from the SPEC OMP2012 pub-
lication [16], we see each application has a high memory footprint,
indicating there is a substantial amount of memory transfers occur-
ring between each SMP system’s nodes. These RDMA memory
accesses occur across the QDR InfiniBand network for the vSMP
at a bandwidth of up to 40Gbs, whereas the SGI UV uses the NU-
MAlink5 interconnect with only a 15Gbs peak bandwidth through
2 unidirectional 7.5Gbs links. Looking at the unidirectional link
bandwidth, we see the vSMP has 5.33 times more bandwith than
the SGI UV. This may be further compounded by the fact that 16
cores share the same bandwidth NUMAlink route on the SGI UV,
comapred to only 12 cores sharing a QDR InfiniBand link, infer-
eing there may also be greater interconnect contention on the SGI
UV. This inter-node bandwidth discrepancy, coupled with the ar-
chitecture differences, likely explains why the vSMP significantly
outperforms the UV the 4 memory-intensive OpenMP benchmarks.



5.2 Trinity
Figure 5 and Figure 6 show the fundamental aspect of running any
application: wallclock time. In Figure 5 we can see the runtime of
two jobs with both the ScaleMP vSMP in memory mode and Ari-
zona’s SGI UV 1000. Here, we notice that the vSMP outperforms
the UV1000 by 15.6% for Job 1 and 9.3% for Job 2.
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Figure 5: Trinity Wallclock Time

Interestingly, Figure 6, which shows total CPU calculation time, is
not at all representative of the outcome of the actual wallclock run-
ning time. This is due to the fundamental architectural differences
between the two systems. With vSMP in memory mode, it consid-
ers all non-local (RDMA) memory accesses to be system I/O and
therefore not counted towards the first processor’s CPU time. With
the SGI UV, however, we see that the opposite is true, as remote
memory accesses are processed by those CPUs which control the
respective memory space, leading to a higher CPU time. The differ-
ence between vSMP and the SGI in Job 2 shows that much of Job
2’s workload is actually spent accessing remote memory, and not in
direct algorithmic calculations. The RDMA offload engines within
the Mellanox Connect-X3 InfiniBand adapters are likely respon-
sible for this, as memory buffering happens without direct CPU
involvement and only a CPU interrupt.

The key aspect and utility of these large memory SMP machines
is just that - their ability to access large amounts of memory. As
such, it is imperative to consider whole memory usage with the
two workloads deployed in the Trinity application. In Figure 7,
we see the resident and virtual addressing that each job uses. First
and most fundamentally, we see that Job 2 accesses over 1 Ter-
abyte of main memory, which makes the existence of such large
memory systems of pivotal importance. Looking deeper, we can
also see some architectural differences in the way in which each
system handles remote memory. With the vSMP system in mem-
ory expansion mode, the OS shows most of the memory is resident
to the local CPU. However, with the many-core availability in the
SGI UV architecture, resident memory is listed only based on the
controller board’s memory usage, which is 4.3% and 12.7% the to-
tal virtual memory space for Job 1 and Job 2, respectively. While
this may be a matter of OS accounting semantics, it does appear
that there is a significant overhead in virtual memory utilization
with the vSMP memory expansion mode. This overhead decreases
as overall resident memory usage increases, with Job 1 requiring
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Figure 6: Trinity CPU Time

23.6% virtual memory space and Job 2 requiring an extra 8.1% of
virtual memory space when compared to the UV1000. While this
is unlikely to be an issue for most users, it is potentially worth bud-
geting in this overhead when considering overall memory usage in
a ScaleMP system.
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6. DISCUSSION
From the SPEC OMP2012 benchmark suite focusing on OpenMP
multi-threaded performance and the Trinitiy de novo assembly ap-
plication, we’ve found a number of performance implications for
both vSMP and UV systems. From OMP2012 benchmarks as a
whole, we’ve found that the vSMP generally performs better at 192
cores than the SGI UV. Much of this performance improvement
of the vSMP over the SGI UV is expected as the vSMP utilizes
a newer CPU architecture, and accounts for vSMP running faster
on the majority of benchmarks. However, there some benchmarks
where the vSMP significantly outperforms the UV, sometimes by
magins beyond 5 times. This is most likely due to interconnect
bandwidth contention that exists the UV across the NUMAlink5
architecture when compared to the faster QDR InfiniBand intercon-
nect found with ScaleMP’s vSMP. This difference plays a signifi-



cant role in performance for applications that are bound by mem-
ory bandwidth, but not for CPU bound tasks where there is little
inter-node communication and remote memory access. If the per
core memory usage is especially small and the application is al-
most purely CPU bound, the SGI UV performs much better than
the vSMP, as seen with the Smith-Waterman benchmark. It is our
hypothesis that this is due to the cache size differences between
the two CPU architectures that favors the Westmere based SGI
UV1000. It is also worth noting that several OMP2012 benchmarks
did not scale much past 2x performance speedup compared to the
reference system, indicating very weak scaling of the benchmarks
themselves. This goes to show that not all applications will ef-
fectively parallelize with OpenMP, and that scaling is still largely
dependent on the algorithm itself. It is also worth stressing that
we are only characterizing two deployed systems, which may not
accurately represent other current or future ScaleMP vSMP or SGI
UV deployments, as there exists many differences between each
deployment. This discrepancy between deployments can be seen in
the reported improved performance of the SGI UV results provided
by SGI Corporation on the SPEC OMP2012 website [16].

From Trinity, we first learned that both the ScaleMP vSMP and
SGI UV1000 are capable of handling large in-memory big data
applications. Specifically, the Trinity Job 2 utilized over 1TB of
main memory for the transcriptome assembly, a significant feat that
is largely unmanageable by most commodity systems today. Fur-
thermore, the traditional code of Trinity was not change or altered
in any way, showing how off-the-shelf software that hasn’t been
rewritten for use in a distributed memory cluster can still scale to a
necessarily large size. When comparing the vSMP to the SGI UV,
we again find the vSMP slightly faster than the UV, with a 9.3%
reduction in wallclock time for the larger Trinity job. As we expect
the coverage of the transcriptomes to increase dramatically in time,
this paves the way for even larger Trinity jobs in the future.

6.1 Usability
Both SMP systems evaluated in this manuscript provide mecha-
nisms to easily scale computation to hundreds of CPUs and ter-
abytes of memory in a manner that is far simpler than traditional
distributed system deployments. However, both systems still re-
quire some effort to properly tune applications to best utilize the
available resources. Often unmodified applications deployed on
vSMP with no tuning can have drastically decreased performance
than optimal. This is largely due to non-uniform memory access
(NUMA) issues inherent with a shared memory system, as well as
the inability of the OS schedule to adapt. As such, the ScaleMP
manual was developed for FutureSystems to help new users lever-
age the power of the Echo system [24]. Applications are clas-
sified into MPI, threaded, OpenMP, throughput, and serial types,
each with an example use case to show how the application can be
quickly tuned to gain optimal performance. This piece of docu-
mentation can be critical for effectively using the shared memory
resource because most of the shared memory use cases come from
users who have little detailed knowledge of the parallelism in the
applications. For instance, a user may want to use a commercial
toolkit, but their problem set requires a large memory space and
they have no ability to modify or adapt the application for a more
classical distributed memory cluster or supercomputer. In such sit-
uations, the SMP resource fits well, but some application tuning is
still needed. Luckily, this tuning effort for either ScaleMP vSMP or
an SGI UV machine is likely far less than rewriting the given work-
load to utilize a classic distributed memory HPC environment.

While not a typical use case for SMP machines, both the ScaleMP
vSMP and SGI UV can also support traditional HPC workloads,
including MPI distributed memory applications. As referenced in
Figure 3, there is a slight but notable overhead compared to a bare
metal distributed memory cluster for running MPI applications such
as Linpack on vSMP. The SGI UV1000 offers a specialized MPI
offload engine as part of the SGI foundation software. This abil-
ity for these SMP systems to support any workload, threaded, large
memory, or even MPI based, is a considerable advantage for super-
computing centers, as workloads are often very diverse.

As the IU FutureSystems goal is to provide an experimental test-
bed for Grids, Clouds, and HPC, we are at an ever-evolving in-
tersection of application prototyping and development across a di-
verse set of scientific fields. As such, the Echo vSMP deployment
found highly variable usage requests throughout the project. At
times, Echo was competed for and multi-user scheduling necessary
to enable multiple users to simultaneously develop and deploy their
codes on Echo. At other times, Echo’s usage was relatively low
with many idle cycles. This is due to the dynamic provisioning as-
pects of ScaleMP’s vSMP were always desired but never deployed.

An advantage of ScaleMP vSMP is that the underlying hardware is
commodity x86 based, connected with an InfiniBand interconnect
and could, with proper provisioning tools, be redeployed as a com-
modity distributed memory cluster in a matter of minutes, allowing
for maximum utilization of the hardware independent of the work-
load type. Ideally, one could have a large shared memory machine
available on demand when needed, but also allow the hardware to
serve more traditional HPC workloads when large memory require-
ments didn’t exist. While this is not possible using an SGI UV
architecture, the SGI is still known for supporting MPI workloads
effectively [25].

7. CONCLUSION
While distributed memory clusters and supercomputers are a com-
mon solution for big data science, there are times when large shared
memory SMP machines are needed. These use cases include when
rewriting the application or workload is either impractical, infeasi-
ble, or outside the control of the scientists. In this manuscript, we
have evaluated SMP machines that have the ability to support big
data workloads; the ScaleMP vSMP deployment at Indiana Uni-
versity, and the SGI UV1000 deployment at University of Arizona.
While these machines are different in terms of both design and im-
plementation, they do represent relatively similar possibilities and
size.

In this study, both SMP machines perform very well at both OpenMP
threaded tasks and with our big data bioinformatics de novo assem-
bly application, Trinity. We found that overall the ScaleMP vSMP
system deployed at Indiana University often performed better at
OpenMP applications. ManyCPU-bound applications performed
slightly faster on the vSMP deployment, and some memory-bound
OpenMP codes performed far better in some special cases. We also
found an increase in performance with the ScaleMP vSMP run-
ning Trinity de novo assembly tasks, largely relating to the CPU
architecture improvements realized by the hardware in the ScaleMP
deployment. In summary, both SMP deployments are well suited
to provide exceptional computing environments for supporting big
data workloads which don’t fit to classic distributed memory archi-
tectures. Due to the increased computing demand seen from the
explosion of big data science and the relative ease of use with both
the ScaleMP vSMP and SGI UV, we expect the use of systems to



only increase in the future.
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