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ABSTRACT
A primary challenge of the cyberinfrastructure research com-
munity is the need to define the Platforms for Science be-
yond 2020. We analyze major current trends and propose
that in order to deliver the Platform for Science in 2020 the
dominant research challenge is to manage the convergence
of capabilities of traditional HPC systems with richness of
Apache Big Data systems. In this vision paper, we purport
to examine the relationship between infrastructure for data-
intensive computing and that for High Performance Com-
puting and examine possible ”convergence” of capabilities.

1. COMPUTING PLATFORMS: STATUS QUO
Two important current major trends in computing systems
are: (i) A growth in high performance computing (HPC)
with an international exascale initiative, and (ii) Software
systems to support data-intensive applications with an ac-
companying cloud infrastructure of well publicized dramatic
and increasing size and sophistication.

Traditional exascale simulations involve applications of dif-
ferential equation based models that need very fine space
and time steps and this leads to numerical formulations that
need the memory and compute power of an exascale ma-
chine to solve individual problems (capability computing).
Big data problems do not clearly need a full exascale sys-
tem to address a single job. Typically any platform will
be running lots of jobs that are sometimes pleasingly par-
allel/MapReduce (Cloud) and sometimes small to medium
size HPC jobs which in aggregate are exascale (HPC Cloud)
(capacity computing).

Understanding the trends has a practical consideration, as
engineering the merger for HPC and data-intensive problems
will allow: (i) More efficient sharing of large scale resources
running simulations and data analytics; (ii) The need for
higher performance Big Data algorithms; (iii) Richer soft-
ware environment for research community building on many
”big data” tools, and (iv) Facilitate a sustainability model

for HPC, as it does not have resources to build and maintain
a full software stack.

We use term cloud broadly without choosing particular im-
plementations: public/private clouds, OpenStack/Docker vir-
tualization. In fact many public clouds now offer features
characteristic of HPC including GPU’s, high performance
networks and FPGA accelerators. This is clear for deep
learning in the cloud where the value of GPU’s Is well un-
derstood.

Probably public clouds either offering IaaS or those running
today’s Internet are the lowest cost (but not necessarily low-
est price) solution and in aggregate are far more powerful
than the systems used in science research. Of course all
systems require a significant ecosystem with many people
developing, testing and running software.

2. UNDERSTANDING APPLICATIONS
We have examined extensively the landscape of applications
across the HPC and data-intensive spectrum. For exam-
ple in Ref. [1, 2] on examining applications with common
characteristics, we introduced the concept of Ogres and 64
Convergence Diamonds (features). Ogres provides a classifi-
cation and structure including, (i) classic MPI-based simula-
tions, (ii) pleasingly parallel and workflow systems, and (iii)
data-intensive applications epitomized by deep learning.

We highlight the primary differences and similarities be-
tween data-intensive problems and traditional high-performance
applications.

Some machine learning like topic modeling (LDA), cluster-
ing, deep learning, dimension reduction, graph algorithms
involve Map-Collective or Map-Point to Point iterative struc-
ture and benefit from HPC. However, in general, deep learn-
ing doesn’t exhibit massive parallelism due to stochastic gra-
dient descent using small mini-batches of training data, but
deep learning does use small accelerator enhanced HPC clus-
ters. If this were to change, this would have important im-
plications for Deep learning on HPC platforms.

Further differences between data-intensive and simulation
applications worth a brief mention are: (i) Classic Non-
iterative MapReduce is major paradigm in data-intensive
sciences, but it is not a common simulation paradigm except
where ”reduce” summarizes pleasingly parallel execution as
in some Monte Carlo simulations; (ii) There are many data-



intensive applications that have a master-worker or embar-
rassingly parallel flavor; examples are all the event- based
applications from distributed devices or the separate inter-
actions on a science instrument – accelerator, telescope, light
source; (iii) There are important similarities between Grid
Computing (from HPC field) and some big data applications
and technologies; (iv) Data intensive applications often have
large collective communication, whereas classic simulation
has a lot of smallish point-to-point messages which moti-
vates the MapCollective model, and (v) Simulations tend to
need high precision and very accurate results (partly because
of differential operators), however, data-intensive problems
often don’t need high accuracy as seen in trend to low pre-
cision (16 or 32 bit) deep learning networks, as there are no
derivatives and the data has inevitable errors.

There are similarities between graph based data intensive
applications and particle simulations with a particular cutoff
force. Both are MapPoint-to- Point problem architecture
many data-intensive problems involve full matrix algorithms
and thus are easy to parallelize similar to ”long range force”
(as in gravitational simulations) as all points are linked. This
suggests an opportunity for fast multipole ideas in data-
intensive applications that was for example highlighted in
the NRC report [3].

3. COMPUTING PLATFORMS: TRENDS
There are at least three trends that we see represented in
any Future Platform for science research:

• The increasing power and complexity of modern HPC
systems as exemplified by those involved in drive to
build exascale class machines.

• The increasing use and sophistication of commercial
and open cloud infrastructure (that can be used as
IaaS, PaaS, SaaS, FaaS etc.)

• The increasing functionality and use of Big Data soft-
ware systems in conjunction with HPC.

In addition, there is growing interest in streaming data and
event based computing models such Amazon Lambda, IBM
OpenWhisk and Function-as-a-Service (serverless comput-
ing). These general trends are likely to continue independent
of specific technology trends. The specifics of the technology
will manifest across the following:

Microscopic Architecture: The three primary micro-
scopic architecture are: (i) Continuation of X86 systems,
(ii) Many core systems (e.g., KNL) and (iii) non-traditional
architectures (e.g., GPU, FPGA) etc.

Macroscopic Architecture: The three primary macro-
scopic architectures are: (i) Data Center Model, (ii) Tra-
ditional supercomputers and, (iii) Clusters (with virtualiza-
tion) such as those represented by NSF Comet.

4. CONVERGENCE OF CAPABILITIES
Armed with an understanding of the spectrum of applica-
tions and platform trends, we will now examine the con-
vergence of high-performance computing and data-intensive
platforms[4, 5, 6].

In order to meet the requirements of future science appli-
cations, there must be a greater/richer set of analysis-as-a-
service than currently available. Future analysis and associ-
ated middleware must utilize traditional performance capa-
bilities, yet expose fundamentally new capabilities. Thus a
prudent, if not only approach, is to (re-)design the software
stack for analysis.

Future platforms be usable by applications from both ends
of the spectrum: traditional HPC applications that need Big
Data ( ”All Exascale Applications are data-intensive prob-
lems”), as well as data-intensive applications that will in-
creasingly need HPC (e.g., Deep Learning with HPC capa-
bilities). Given the current separation of characteristics of
HPC and data-intensive applications this requires a conver-
gence of capabilities.

We deduce that any Future Platform must satisfy the fol-
lowing constraints:

• It must allow easy integration of public and private
clouds and allow HPC and cloud approaches to run
well and run together

• It must allow the powerful features of modern clouds
such as ABDS, XaaS to be useable on HPC hardware

• It must support distributed data sources and reposito-
ries

• It should support modern workflow and portals includ-
ing Python based front ends; an area where simulations
and Big Data have similar requirements.

We call such platforms HPC Cloud platforms. Independent
of whether we consider ”cloudification” of HPC or ”HPCfi-
cation of Clouds”.

Independent of the directionality, the future platform will
be a software- defined system that works across different
types of macroscopic and microscopic architectures as well
as for different applications systems. This requires the se-
lective integration of the Apache Big-Data Stack (ABDS)
capabilities appropriately implemented for supercomputing
platforms. We have examined High Performance Computing
Enhanced Big Data Stack (HPC-ABDS) where we examined
the addition of high performance runtime and components
to Apache systems. We have highlighted the importance of
the Big Data systems associated with Apache Foundation,
such as Hbase, Hadoop, Spark, Storm etc., which we term
the Apache Big Data Stack (ABDS), even though impor-
tant components such as MongoDB and Tensorflow are not
Apache projects. We note that most of these technologies
are in principle usable on both HPC and Cloud IaaS systems,
though in practice many challenges remain. Independent of
the hardware infrastructure, there are even stronger forces
driving the adoption of ABDS technologies. They offer us-
ability, functionality and sustainability that is not available
in the HPC ecosystem. A realization of the HPC-ABDS con-
cept is provided by the SPIDAL project [7, 8] and discussed
in publications [9, 2].
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