
An Overview of the Granules Runtime for Cloud
Computing

Shrideep Pallickara, Jaliya Ekanayake and Geoffrey Fox

Community Grids Laboratory
Indiana University

Bloomington, IN 47401, USA
{spallick, jekanaya, gcf}@indiana.edu

Abstract — In this paper we present a short introduction to the
Granules system, which is a lightweight streaming-based
runtime for cloud computing. This paper provides a summary
of the capabilities supported by the runtime.

Keywords: cloud computing, streaming systems, map-reduce,
runtime

I. INTRODUCTION
Cloud computing enables applications to harness

capabilities, both computing and storage, that are available in
computational clouds that comprise thousands of computers.
In the past year, cloud computing environments have gained
significant traction. Salesforce allows clients to purchase
entire solutions that are hosted on their cloud. In some cases,
such as Google, the generated responses are the result of
processing that was performed in the cloud. Amazon, on the
other hand, allows direct access to its cloud: users can
allocate and deallocate entire virtual machines. Typically,
most of these cloud computing solutions have been used for
commercial applications such as processing web documents,
videos, images, payroll, and so forth.

The sheer scale of the computing and storage capabilities
available in datacenters make cloud computing particularly
well-suited for scientific applications. These scientific
applications can be compute-intensive, data-intensive or
both: in each case the processing needs are significant
enough to mandate concurrent processing.

It can be argued that cloud computing is a natural
evolution of the grid computing paradigm wherein the
services are hosted on a compute cloud that can comprise a
much larger set of machines.

II. GRANULES
The Granules project is a lightweight streaming-based
runtime for cloud computing. Granules orchestrates the
concurrent execution of applications on multiple machines.
The runtime manages an application’s execution through
various stages of its lifecycle: deployment, initialization,
execution and termination. Granules uses NaradaBrokering
[1] as the content distribution network for disseminating
streams. At each computational resource, Granules manages
the concurrent execution of multiple application instances.
Fig. 1 depicts the components that comprise Granules.

Figure 1. Figure 1: Overview of the Granules runtime

One of the characteristics of cloud computing is that the
resources are dynamic. If an application programmer is
forced to keep track of all the available computational
resources, the concomitant increase in the application’s
complexity would be significant. Granules obviates the need
for applications to track resource availability. Instead,
applications delegate the responsibility of discovering and
harnessing computational resources to Granules. Depending
on the requirements, Granules can deploy application
instances on one or more computational resources.

Besides incorporating the processing functionality,
application instances need to specify the datasets (or sources
thereof) that will be processed during execution. An
application may generate its own inputs or operate on
external datasets such as files, streams and databases. The
application can also generate outputs in a variety of formats.

Granules performs two key steps during the deployment
of the application instance. First, it initializes the state of the
application instance based on the specified initialization
directives. Second, it initializes the datasets that the
application operates on. Dataset initializations involve
subscribing to the appropriate data streams, configuring

access to files on the networked file system, or setting up
connections to databases.

Granules also allows application instances to specify an
execution profile that will govern their lifetime and
scheduling strategy. In addition to the traditional exactly-
once semantics for execution, application instances can be
executed a specified number of times, at regular intervals, or
a combination thereof. Application instances can also be
stay-alive with the execution being scheduled periodically,
whenever additional data is available, or until the application
instance asserts that the processing is complete.

After every scheduled execution, Granules checks to see
if the application instance is ready for termination based on
the specified execution profile. If it is determined that an
application instance is ready for termination, Granules
removes it from the concurrent execution queue and reclaims
any allocated resources. Reclaiming involves unsubscribing
from any of the streams that the application instance was
consuming and clearing any file locks that were established.
Components that register for diagnostic messages related to
task executions are notified about any lifecycle transitions.

III. STREAMING MAPREDUCE
The map-reduce [2] programming model (depicted in

Fig. 2) facilitates the concurrent processing of large
datasets. Here, large datasets are split into smaller more
manageable sizes which are then processed by multiple map
instances. The results produced by individual map functions
are then sent to reducers, which collate these partial results
to produce the final output. A clear benefit of such
concurrent processing is a speed-up that is proportional to
the number of computational resources. The most popular
implementation of the MapReduce framework is Hadoop
[3], which relies on the Hadoop Distributed File System.

In Granules, we have incorporated support for a stream-
based implementation of the MapReduce framework. The
streaming implementation of MapReduce in Granules has
two distinct advantages over file-based implementations.
First, intermediate results are shared between the
computational units using streaming, instead of files that
require disk IO, which can add considerable overheads. The
second advantage stems from the fact that results can be
streamed to the reducers as they become available instead of
having to wait for the entire processing to be complete. This
feature is particularly relevant in situations where there is
often a need to get as many results as possible within a fixed
amount of time. We have demonstrated [4] the suitability of
streaming-based MapReduce for certain classes of data
intensive scientific applications.

Typical MapReduce stages look like a directed acyclic
graph with the MapReduce execution progressing in
monotonically increasing stages. Besides the basic support
for MapReduce, we have incorporated support for variants
of the MapReduce framework that are particularly suitable
for scientific applications. This includes support for iterative
and recursive implementations of the framework. We are
incorporating support for cycles wherein the outputs of the
reduction stage could themselves be inputs to the preceding
map stages. This feature is particularly useful in clustering

Figure 2. Figure 2: The MapReduce programming model

algorithms where the computed (reduced) results need to be
refined, to meet a targeted error rate, by the map stages.

IV. RELATED WORK
 In this section we present a brief overview of the some
of the related work in this area. Dryad [5] is a distributed
execution engine for coarse grain data parallel applications.
Dryad combines the MapReduce programming style with
dataflow graphs, that are directed and acyclic, to orchestrate
computational tasks. Phoenix [6] is an implementation of
MapReduce for multi-core and multiprocessor systems.
Disco [7] is an open source MapReduce runtime developed
using the Erlang functional programming language. Similar
to the Hadoop architecture, Disco stores the intermediate
results in local files and accesses them using HTTP
connections from the appropriate reduce tasks.

ACKNOWLEDGMENT
This research is supported by grants from the National
Science Foundation’s Division of Earth Sciences (EAR-
0446610) and the Division of Information and Intelligent
Systems (IIS-0536947).

REFERENCES
[1] S Pallickara and G Fox. “NaradaBrokering: A Middleware

Framework and Architecture for Enabling Durable Peer-to-Peer
Grids”. Proceedings of the ACM/IFIP/USENIX International
Middleware Conference Middleware-2003. pp 41-61.

[2] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” ACM Commun., vol. 51, Jan. 2008, pp. 107-113.

[3] Apache Hadoop, http://hadoop.apache.org/core/
[4] J. Ekanayake, S Pallickara and G. Fox. “Map-Reduce for Scientific

Applications”. Proceedings of the IEEE International Conference on
e-Science. Indianapolis. 2008.

[5] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building blocks,”
European Conference on Computer Systems , March 2007.

[6] Disco project, http://discoproject.org/
[7] C. Ranger, R. Raghuraman, A. Penmetsa, G. R. Bradski, and C.

Kozyrakis. “Evaluating MapReduce for Multi-core and
Multiprocessor Systems,” Proc. International Symposium on High-
Performance Computer Architecture (HPCA), 2007, pp. 13-24.

