
HyMR: a Hybrid MapReduce Workflow System
Yang Ruan, Zhenhua Guo, Yuduo Zhou, Judy Qiu, Geoffrey Fox

School of Informatics and Computing
Indiana University Bloomington

{yangruan, zhguo, yuduo, xqiu, gcf}@indiana.edu

ABSTRACT
Many distributed computing models have been developed for high
performance processing of large scale scientific data. Among
them, MapReduce is a popular and widely used fine grain parallel
runtime. Workflows integrate and coordinate distributed and
heterogeneous components to solve the computation problem
which may contain several MapReduce jobs. However, existing
workflow solutions have limited supports for important features
such as fault tolerance and efficient execution for iterative
applications. In this paper, we propose HyMR: a hybrid
MapReduce workflow system based on two different MapReduce
frameworks. HyMR optimizes scheduling for individual jobs and
supports fault tolerance for the entire workflow pipeline. A
distributed file system is used for fast data sharing between jobs.
We compare a pipeline using HyMR with the workflow model
based on a single MapReduce framework. Our results show that
the hybrid model achieves a higher efficiency.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems – Distributed Applications; D.2.11 [Software
Engineering]: Software Architectures – Domain-specific
architectures.

General Terms
Algorithms, Management, Performance, Design

Keywords
MapReduce, Iterative Algorithms, Workflow Management

1. INTRODUCTION
The computing power of individual computers and small clusters
is clearly not able to deal with the ever-growing amount of data
collected by modern instruments. New parallel programming
models have been proposed to address data intensive problems It
is well understood that parallel runtimes can handle pleasingly
parallel applications. Further, many of the tools are computing
intensive, and some of them are iterative algorithms. Similar to
these tools, current distributed workflow has large amount of data
and heavy computations. Apparently, a workflow system based on
single machine is not sufficient for large amount of data as many
of the tools require the use of high-performance computing
resources in order to achieve acceptable performance.
New parallel programming models have been developed to

alleviate the problem of increasing size of data. This is
exemplified by MapReduce [3] and runtime systems include
Dryad [1], Sector/Sphere [2] and Hadoop [4]. Hadoop is an open
source MapReduce implementation and has been adopted by large
corporation, such as Facebook [5], Yahoo [6] and academic
research organizations [7-8]. MapReduce allows a user to specify
a map function which reads a key/value pair and generates a set of
intermediate key/value pairs; a reduce function merges all the
associate values belonging to the same key. The applicability of
MapReduce has been constrained in particular to a class of
pleasingly parallel applications. For more complicated parallel
applications, such as iterative applications for many data mining
and data analysis algorithms (e.g. Expectation Maximization
algorithms [9]), Hadoop is not sufficient. Within a parallel
iterative application, Hadoop treats each iteration as a standalone
MapReduce job, naturally the overhead of restarting and
rescheduling map reduce tasks through disc access grows as the
iterations increases.
To address this problem, Twister [10] proposed an iterative
MapReduce framework, which considers an iterative parallel
application as one iterative MapReduce job. So the map and
reduce tasks are scheduled before it starts and the static data is
kept in distributed memory to avoid overhead of re-loading during
each iteration. Several other iterative MapReduce frameworks
[10, 27-30] have been developed as well. Even though Twister
can run iterative parallel applications much faster than Hadoop, it
lacks distributed file system and node level fault tolerance
support, which limits its applicability in a workflow with multiple
MapReduce jobs and large data flow between jobs.
To overcome the shortcomings of Hadoop and Twister in a
workflow that contains iterative MapReduce jobs, we have built a
Hybrid-MapReduce workflow system (HyMR), which supports
both Hadoop and Twister runtimes to composite workflows with
multiple MapReduce jobs. Firstly, iterative jobs inside a pipeline
can be implemented using Twister instead of Hadoop. HyMR can
handle iterative jobs better using Twister than Hadoop. Secondly,
we added support of Hadoop Distributed File System (HDFS) to
Twister, so data flow between jobs in pipeline uses HDFS and
achieves a better performance than transferring data manually
among local file system between compute nodes. Therefore the
total time of processing workflow decreases accordingly. Thirdly,
as Hadoop has built in fault tolerance support, the non-iterative
applications were implemented using Hadoop. If a compute node
fails during the execution, rather than restarting the whole job,
HyMR leverages Hadoop to handle node failure. Lastly, we added
multiple-user support and used XML to record the workflow’s
status, which can be extended to webserver for a user to monitor
and submit jobs online.
We have evaluated HyMR on real applications using a pipeline
contains three distributed jobs and several single node jobs. The
pipeline contains two MapReduce jobs and one iterative
MapReduce job. We have implemented the pipeline in Twister-
workflow and in HyMR-workflow to compare the results.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ECMLS’12, June 18, 2012, Delft, The Netherlands.

Copyright 2012 ACM 978-1-4503-1339-1/12/06...$10.00.

This paper is organized as follows: Section 2 presents the detailed
design and implementation of HyMR, Section 3 introduces the
workflow pipeline and some improvements over HyMR. Section
4 demonstrates the efficiency of HyMR with experiments that
include performance comparison, scale up test and fault tolerance
test. In Section 5, we discuss related work of iterative MapReduce
and distributed workflow system. Section 6 provides a summary
of the contribution and outlines future work.

2. HyMR Workflow System
HyMR comprises an interface, an instance controller, a job
controller and a runtime support system as shown in Figure 1.
HyMR can run on traditional HPC clusters and supports
TORQUE [11]. When a workflow is submitted, HyMR interacts
with TORQUE to request resources. Once the resources are
allocated, HyMR will configure and start runtimes. Subsequently,
jobs in the workflow are executed.
User interface enables a user to composite a workflow by
configuring a definition file. The file describes a specific
workflow, which include configurations of Hadoop, Twister and
job executions. The job definition file can be written either in
XML or a simple properties file. The interface can generate an
instance file in XML format so that a user can monitor the
progress of the instance. This design has the potential to enable
the user monitoring and submitting jobs from a web server.
Instance controller controls a workflow instance as an actual
execution copy of a workflow definition. It generates a Direct
Acyclic Graph (DAG) based on the description given in the
definition file where the vertices are jobs and the edges are
dependencies between jobs. The instance controller processes the
control flow accordingly by invoking the job controller when all
the dependents of a job are finished. If a workflow contains a
MapReduce job, the instance controller will notify the runtime
controller system where a corresponding runtime will start if
needed.
Runtime controller starts Hadoop and Twister at beginning of
the workflow, which is called persistent runtime. Because using
TORQUE, the compute nodes allocated for an instance are
consistent during the execution. Therefore for a pipeline contains
more than one distributed job, the persistent runtime reduces cost
since it only starts and stops the runtimes once, instead of starting
a runtime at the beginning and stopping the runtime at the end of
each distributed job. After an instance is completed or failed, the
controller will then shut down the runtimes.
Job controller controls a job execution. An instance controller
will invoke a job execution when all the jobs that a job depends
on are finished inside the instance. A job controller can support
jobs varying from single node job, such as a single thread and
multi-thread jobs, to distributed jobs, such as MapReduce and
iterative MapReduce jobs. As we have added support for Twister
fault tolerance, for a Twister job, a Twister fault detector will be
invoked and keep checking whether every daemon is alive.
Twister fault detector will kill the current job once it detects a
Twister daemon failure. Such fault detector is not necessary for
Hadoop since it can handle node level fault tolerance by itself.
Once a job fails during execution, the job controller will notify the
instance controller to restart the corresponding runtime if this
failure is a Hadoop or Twister runtime failure. Besides runtime
failures, if a job fails, the job controller will simply return an error
to instance controller and be marked as failed. If retry times of a
certain job is below maximum allowed number, instance

controller will restart the job. Otherwise, it will kill all the other
running jobs and marked this instance as failed.
Hadoop and Twister have different features. By using HyMR for a
pipeline with multiple MapReduce jobs, we are trying to
eliminated the shortcomings of the two runtimes and achieve a
better performance by integrating them.

Figure 1 The design and architecture of HyMR interacts

with a cluster

2.1 MapReduce and Hadoop
MapReduce is a parallel programming model proposed by Google
to support large-scale data processing. Hadoop is an open source
implementation of MapReduce with a distributed file system
(HDFS) [12]. Each MapReduce job takes a set of key/value pairs
as input, and produces a set of key/value pairs. The computation
of MapReduce jobs is split into 2 phases: map and reduce. In map
phase, map function takes an input key/value pair, read the data
accordingly from HDFS, and produces a set of intermediate
key/value pairs. Hadoop groups together all intermediate values
associated with the same intermediate key and passes them to the
reduce function. In reduce phase, each reduce operation accepts
an intermediate key and all values associate with that key. It
merges these values to form a possibly smaller set of values, emits
key/value pairs of the final output, and writes the final output to
HDFS. The execution of a typical MapReduce job on Hadoop is
shown in Figure 2a.
Hadoop adopts master-slave architecture. The master node runs a
namenode, a secondary namenode and a job tracker. The
namenode is mainly used for HDFS for hosting the file system
index; the secondary namenode can generate snapshots of the
namenode's memory structures, thus preventing file system
corruption and reducing loss of data; the job tracker allocates
work to the task tracker nearest to the data with an available slot.
The slave node runs a datanode and a task tracker: datanode
contains blocks of data inside HDFS where multiple datanodes
can serve up distributed data over network; task tracker will
spawn java processes as workers to execute the work received
from job tracker.
Hadoop supports fault tolerance in both MapReduce execution
and HDFS. HDFS supports fault tolerance by providing file
replicas among the slave nodes. In case one or several datanodes
fail, the integrity of the distributed files won’t be harmed by using

the replicas from other running datanodes. During a MapReduce
job execution, once a task tracker fails, all the unfinished tasks on
that task tracker will be scheduled to the empty slots of other task
tracker. So if any of the slave nodes fail during an execution of
Hadoop MapReduce job inside a workflow, HyMR will let
Hadoop handle the failure. However, if the namenode or job
tracker fails, Hadoop will fail and wait for the user to manually
restart it. Therefore, to overcome this, HyMR will automatically
restart Hadoop and the MapReduce job once the master node fails.

2.2 Iterative MapReduce and Twister
Many data analysis applications require iterative computations,
such as K-Means [13], Deterministic Annealing Clustering [14]
and Dimension Reduction algorithm [15]. This type of
applications can be parallelized with MapReduce paradigm.
However, they have a unique feature that is to keep running Map
and Reduce iteratively until the computation satisfies a condition
to converge to a final result.
Hadoop has been proved to be useful in large scale data parallel
distributed computing job. However, it does not directly support
iterative data analysis applications. Instead, the iterations must be
orchestrated manually using a driver program where each iteration
is piped as a separate MapReduce job. There are several
problems: Firstly, as the iteration number is manually set by the
user, it is impossible to make the program converge to meet a
certain condition; Secondly, the static data needs to be load from
disk to memory in every iteration which can generate high
network I/O and disk I/O overhead; Thirdly, the job tracker needs
to reschedule map and reduce tasks for every iteration, which
brings considerable scheduling overhead.
We use Twister, an iterative MapReduce framework to run the
iterative parallel applications inside our workflow. Twister uses
pub/sub messaging for all the communication/data transfer where
a broker will be running on one of the compute nodes during the
execution. This node is classified as head node in HyMR. All the
other nodes are classified as compute nodes where the Twister
daemon runs on. Twister daemon can connect to broker and
spawn threads executing map and reduce tasks.
The client driver of Twister is used to support iterations of map
and reduce tasks. The map and reduce tasks won’t exit after one
iteration unless the client driver sends the exit signal. So an
iterative MapReduce job is not considered as multiple MapReduce
jobs as in Hadoop. Twister supports for long running mappers and
reducers with an in memory data model. This design eliminates
the overhead of data reloading from disk to memory across
iteration boundaries. Twister schedules map and reduce tasks
before the first iteration so that they are processed by the same
mappers and reducers during each iteration for locality. This can
eliminate the scheduling overhead of task rescheduling. In
summary, Twister is optimized for iterative parallel applications,
where Hadoop doesn’t perform well. Even though Twister runs
fast for iterative parallel applications, current implementation of
Twister lacks several features for large-scale usage:
1) Distributed file system support. Hadoop uses HDFS for

large distributed data storage while Twister needs data
staging before MapReduce job starts. Usually in data staging
phase, a Network File System (NFS) is used to store all the
data first, and then the user needs to partition the file and
distribute the input files to each compute node’s local disk. A
typical Twister MapReduce workflow job is shown in Figure
2b. This could result in a high network overhead if several
MapReduce jobs were piped on a large number of compute

nodes. The data transfer time cost from one MapReduce
job’s result to another MapReduce job’s input will be high.

2) Fault tolerance. Even though Twister stated that it supports
fault tolerance in a heartbeat and checkpoint fashion, in
practice, Twister can detect if daemon running on compute
node has failed, but it couldn’t resume the running
application. So the application will be paused until the user
manually restarts the Twister daemons and the MapReduce
job. This could result in a high overhead when the user
doesn’t monitoring the Twister MapReduce job
continuously.

3) Dynamic Scheduling. Twister can be faster on iterative
applications than Hadoop by using static scheduling since it
eliminates the rescheduling overhead. However, for non-
iterative MapReduce job, static scheduling could result in
slow execution while each map task’s execution time is
unbalanced. A typical Twister usage is to partition tasks
beforehand. Compared to Hadoop, which can utilize the
resources by scheduling map task dynamically, Twister runs
map tasks where the partition number is equal or propotional
to core number.

start endDistribute
Data

Hadoop
Job

Write
Output

start Distribute
Files Twister Job end

start end
Distribute

Data
Twister

Job
Write

Output

a

b

c

Write
Output

Figure 2 (a) Hadoop Job (b) Twister Job

(c) Twister Job with HDFS
The data staging for (a) and (c) is handled by HDFS

implicitly. For (b), an explicit data staging is happened
before Twister job

2.3 HyMR improvements
HyMR uses a static node allocation while executing a pipeline. As
the node list will be given by TORQUE at the beginning of
workflow, HyMR will select one of the nodes as head node where
it runs namenode, secondary namenode and job tracker for
Hadoop, and broker for Twister; all the other nodes are compute
nodes where they run as datanode, task tracker for Hadoop and
Twister daemon for Twister.
HyMR made several improvements attempting to solve the
problem that Hadoop has with iterative applications and Twister
has with multiple MapReduce job in a pipeline:
Faster execution: because Hadoop runtime is not efficient for
iterative parallel applications where Twister is highly efficient,
using Twister for iterative parallel applications inside a pipeline
can greatly improve the performance over a pipeline than using
just Hadoop. Therefore, inside a pipeline executed by HyMR, all
the iterative parallel applications are run on Twister. The
performance gain from hybrid usage of Twister and Hadoop is
obvious compared to Hadoop alone strategy.
Distributed File system support: a pipeline with only Twister
lacks the support of distributed file system. Even though Twister
can process iterative parallel applications much faster than
Hadoop with data already distributed onto local disk of each

compute node, the file partition and distributing could still be time
consuming. When a Twister MapReduce job finishes, the output
data is written to a shared storage. The next MapReduce job needs
to perform data staging phase again for the previous output data.
Hence, we integrated Twister with HDFS to support component
inside HyMR, where the Twister MapReduce job can directly
write and read data from HDFS without having the data staging
phase beforehand. This may cause slower execution of the
distributed job where HDFS I/O has higher overhead than local
disk. But this could result in a faster execution for a pipeline
consists by multiple MapReduce job to avoid intermediate data
staging. So a pipeline uses HyMR will be faster than not only a
purely Hadoop pipeline, but also a purely Twister pipeline during
a fault-free execution. An HDFS-enabled Twister MapReduce
component inside HyMR is shown in Figure 1c. The data staging
phase are not needed anymore, and similar to Hadoop MapReduce
job, the HDFS enabled Twister MapReduce workflow is
considered as one job.
Better Fault Tolerance: In our hybrid MapReduce model, we use
Hadoop for non-iterative applications and Twister for iterative
applications. If any of the tasks fails during the execution of a
Hadoop job, HyMR will not be notified since the Hadoop will
handle the fault. However, if the process on headnode fails, the
job controller in HyMR will be notified and restart Hadoop and
MapReduce job. Additionally, since the iterative MapReduce jobs
have to be executed on Twister. Twister handles fault tolerance
between iterations as checkpoints for all nodes. Currently it
doesn’t provide node level fault tolerance support. Once one or
more Twister daemons fail during the computation, Twister client
driver will be paused unless the user manually kill it and restart
the whole process. To address this issue, we have implemented a
heartbeat failure checker for Twister inside the job controller as
mentioned above. The instance controller will immediately
terminates the Twister job, restart Twister and reschedule the
Twister job inside the pipeline once a failure of Twister daemon is
detected. In this way, a user doesn’t need to monitor the pipeline
all the time and manually reschedule the job. This mechanism can
shorten the recovery between the runtime failure and when the
user discovers it.

3. A Bioinformatics Visualization Pipeline
We have implemented a bioinformatics data visualization pipeline
using HyMR in two ways. One Hybrid-pipeline is to use our
hybrid model that MapReduce jobs are implemented by Hadoop
and iterative MapReduce job are implemented by Twister with
HDFS. The other Twister-pipeline is to use Twister as a unified
parallel framework for all the distributed jobs. This data
visualization pipeline contains three distributed jobs and several
single node jobs. Among the distributed jobs, Pairwise Sequence

Alignment and MDS Interpolation are MapReduce jobs while
Multidimensional Scaling is an iterative MapReduce job.
The Twister-pipeline is shown in Figure 3. The first job, “Input
File Splitter” splits the input file into a sample file and an out-
sample file, which are required in Twister Pairwise Sequence
Alignment (Twister-PSA) and Twister MDS Interpolation
(Twister-MI-MDS). A data staging is required for each Twister
MapReduce job for fast execution where the staging area is the
local disk on each compute node. Therefore, files are partitioned
and distributed before generating the partition data for Twister
MapReduce job. Because the outputs from Twister-PSA are
already partitioned as matrix files, before the Twister
Multidimensional Scaling (Twister-MDS) job begins, only a file
distributor is needed for data staging. Finally, after all the
MapReduce jobs are finished, the job “Merge Result” will merge
the sample result and out-sample result to generate a final output.

Figure 4 A distributed bioinformatics visualization
pipeline based hybrid usage of Hadoop and Twister

The Hybrid-pipeline is shown in Figure 4. It is very similar to the
Twister-pipeline. But it only has two single node jobs: “Input File
Splitter” and “Merge Result”, which are the same components as
in Twister-pipeline. No explicit data staging phase is needed as
data are stored in shared HDFS. For Hadoop Pairwise Sequence
Alignment (Hadoop-PSA) and Hadoop MDS Interpolation
(Hadoop-MI-MDS), the distributed input files are put into the
HDFS before the MapReduce job starts; the distributed input data
for HDFS Twister Multidimensional Scaling (HDFS-Twister-
MDS) can be read directly from output of Hadoop-PSA inside
HDFS.
As Figure 3 and Figure 4 show, even though these two pipelines
have similar DAG, the data flow of Twister-pipeline is more
complicated than that of Hybrid-pipeline. The simplified DAG of
Hybrid-pipeline shows that all the intermediate data are stored in

Figure 3 A distributed bioinformatics visualization pipeline based on Twister

HDFS, which is highly optimized for handling parallel file
transferring.

3.1 Pairwise Sequence Alignment
Sequence alignment arranges the sequences of DNA, RNA, or
protein to identify similar regions. Pairwise sequence alignment
(PSA) does all-pair sequence alignment over a given sequence
dataset, which is usually in FASTA format, where the result is
generated as an all-pair dissimilarity matrix [16]. There are many
pairwise sequence alignment algorithms, such as Smith-
Waterman-GOTOH (SWG) [17] and Needleman-Wunsch [18]. In
this particular pipeline, we use SWG algorithm for the each pair’s
sequence alignment since our SWG java version is implemented
as a light weighted library. Despite the different alignment
algorithms, the parallelization for calculating the dissimilarity
matrix remains the same, called all-pairs problem
The parallelization of Twister-PSA and Hadoop-PSA is also the
same. The input FASTA format gives a sequence begins with a
single-line description, followed by lines of sequence data. It is
partitioned into row blocks, where each row block contains the
same number of sequences. Each row block pairs compute a result
distance matrix block. The structure of the parallelized result
matrix is given in Figure 5.

Figure 5 Architecture of parallel pairwise sequence

alignment
As shown in Figure 5, the dissimilarity matrix can be computed
using N*(N+1)/2 blocks where N is the number of row blocks. In
the given example, the diagonal blocks need to be computed, and
block(0,1), block(1,N) and block(N,0) need to be computed where
the block(1,0), block(N,1) and block(0,N) are symmetric to them
correspondingly. In traditional all-pairs problem, each matrix
block is considered as a map task. If there are N input row blocks
from the sequence file, there will be N*(N+1)/2 map tasks and N
reduce tasks. In a Hybrid-pipeline, Twister requires the partition
number equals to the total core number of the compute nodes.
Therefore, the partition number in Hadoop component should also
be the same for comparison. However, as we have tested this
pipeline on hundreds of cores scale, the number of map tasks for
Hadoop-PSA will be too many with traditional method. This
could result in huge cost in scheduling of map tasks. Therefore,
we have proposed a new way of giving key/value pairs to the
Hadoop map tasks.
In our implementation, an entire matrix row block, which contains
all the N blocks in that row, will be considered as a map task. In
Figure 5, the row block 0 contains block(0,0), block(0,1) to
block(0,N). Each map task contains either N/2 or (N+1)/2 matrix

block computation. In this way, the number of map tasks can be
reduced from N*(N+1)/2 to N where the granularity of each map
task is increased. This could also contribute to reducing the job-
scheduling overhead in Hadoop. As each task is computational
intensive and has nearly equal amount of computation, this new
assignment should improve overall computation efficiency.

3.2 Multidimensional Scaling
Multidimensional scaling (MDS)[19] is a set of related statistical
techniques often used in information visualization for exploring
similarities or dissimilarities in data. A MDS algorithm can read
from a dissimilarity matrix and assign a location for each item in
the matrix from original dimensional space to an L-dimensional
space. Scaling by Majorizing a Complicated Function (SMACOF)
[20] algorithm is one of the MDS algorithms that have been
proved to be fast and efficient on a distributed system [21-22]. It
uses an Expectation Maximum (EM) method to minimize the
object function value, called stress of target dimensional space
mapping [23]. We use parallel SMACOF application inside our
pipeline.
As the input of MDS is a dissimilarity matrix, the output from
PSA component can be directly read as input for MDS component
in the pipeline. In both Twister and Hybrid pipelines, we only
used Twister-MDS as the second distributed component in the
workflow. The iterative MapReduce SMACOF application uses
two MapReduce computations in a single iteration that involves
one matrix multiplication and one stress calculation [24]. Hadoop
is expected to be highly inefficient for this application. The
difference between the Twister-MDS inside these two pipelines is
that in the Twister-pipeline, the partitioned matrixes are
transferred and read from each compute node’s local disk; in the
Hybrid-pipeline, Twister-MDS load matrix data directly from
HDFS.

3.3 MDS Interpolation
As the memory usage for SMACOF is O(N2), it has become a
limitation for running million scale input sequences on parallel
MDS application. To overcome this problem, Bae et al. [25] has
proposed a simple interpolation approach based on pre-mapped
MDS result of a sample set selected from the given data. The
algorithm proposed is called Majorizing Interpolation MDS (MI-
MDS).
As the input for MI-MDS is the mapping result from MDS and a
set of sequences, we split the input sequences of pipeline into two
sets: one is called sample set, another is called out-sample set
[26]. The PSA and MDS can be applied on the sample set, and
generate the sample mapping result. Then by using the sample
mapping result and the out-sample set, we can execute the MI-
MDS to get the out-sample result. Finally, at the end of the
pipeline, the sample result and out-sample result can be merged to
the final output.
As the interpolated points from out-sample set in MI-MDS are
independent from each other, the MI-MDS algorithm is pleasingly
parallel. However, a sample mapping result from MDS is shared
for every worker. We have implemented Hadoop-MI-MDS for
Hybrid-pipeline and Twister-MI-MDS for Twister-pipeline. In
both implementations, the sample mapping result is read from a
shared location where the size of it is very small. Hadoop-MI-
MDS uses the HDFS to store the out-sample data. Twister-MI-
MDS partitions out-sample set first, and then transfer it to each
compute node’s local disk. And in Twister-pipeline, out-sample
data partitioning is started in parallel with sample data
partitioning.

4. Experiments
The experiments were carried out on PolarGrid (PG) cluster using
129 nodes, which contains 1 head node and 128 compute nodes.
PG cluster is composed of IBM HS21 Bladeservers and IBM
iDataPlex dx340 rack-mounted servers with Red Hat Linux. The
compute nodes in our experiments are iDataPlex dx340 rack-
mount servers with 8-core nodes. So the total number of cores we
used is up to 1024. The data is selected within 16S rRNA data
from the NCBI database. The total input sequence number is
36864. All of the tests ran on Twister-pipeline and Hybrid-
pipeline. Because MDS component needs an average number of
400 iterations to converge, we did not implement Hadoop-pipeline
which will take too long to complete.

4.1 Performance Comparison
This test ran on 96 nodes (768 cores) with the number of
sequences ranging from 6144 to 36864. Half of the sequence data
is classified as sample set and the other half is out-sample set.
This test aims to demonstrate the overall performance of Hybrid-
pipeline is better for large data compared to Twister-pipeline.
These two pipelines have been described in section 3. The
execution time of Twister-pipeline can be divided into three
portions: data staging time, job execution time and runtime
control time. Before the execution of each Twister MapReduce
job, input data is fetched to each compute node’s local disk. The
data-staging process includes file partitioning, creation of local
directories on each compute node, and file transferring. The
overall execution time comprises the execution time of Twister-
PSA, Twister-MDS and Twister-MI-MDS. The time of reading
and writing data to local disk is also calculated. Runtime control
time is the time spent on starting and stopping Twister runtime by
HyMR. The time of Hybrid-pipeline can be divided into the same
three proportions as well. The data staging time is the time taken
by Hadoop to partition and scatter the key/value pairs before the
execution of map tasks. The execution time in Hybrid-pipeline
includes the time of executing Hadoop-PSA, HDFS-Twister-MDS
and Hadoop-MI-MDS. The time of reading from and writing to
HDFS is also considered as part of the execution time. The
runtime control time is the time to start and stop both Hadoop and
Twister. A comparison of the overall time of these two different
pipelines is shown in Figure 6a. Hybrid-pipeline has lower time
cost than Twister-pipeline. The time difference between two

pipelines grows as the data size increases with details shown in
Figure 6b and 6c.
For Twister-pipeline, data staging includes partitioning and
transferring the sample/out-sample FASTA files before Twister-
PSA and Twister-MI-MDS components and the sample
dissimilarity matrices before Twister-MDS. The out-sample
FASTA files have smaller sizes compared to the dissimilarity
matrices, so the data staging time for Twister-pipeline increased
from 459 seconds to 1389 seconds mainly because of the
increasing time of transferring each 2D matrix to the compute
node. In Hybrid-pipeline, data scatter only happens inside the
Hadoop-PSA and Hadoop-MI-MDS components. There is no data
distribution time for HDFS-Twister-MDS as it can directly read
partitioned matrices from the output of Hadoop-PSA in HDFS.
The data partition time does not increase because the size of input
file only increases from 3MB to 18MB. The number of key/value
pairs is fixed to two times the core number of map tasks for both
of Hadoop-PSA and Hadoop-MI-MDS. Therefore, the data
distribution time of Hadoop-pipeline remains around 65 seconds.
As mentioned earlier, job execution time includes the time of
reading and writing data for both of the pipelines. Hybrid-
pipeline’s execution time is higher than that of Twister-pipeline as
reading from HDFS is slower than reading from a local disk on
each compute node. Scheduling overhead in Hybrid-pipeline is
higher than Twister-pipeline because Hadoop adopts dynamic
scheduling while Twister adopts a static scheduling. Runtime
control time of Hybrid-pipeline is higher than Twister-pipeline
because starting both Hadoop and Twister takes more time than
only starting Twister.
In this experiment we illustrate that Hybrid-pipeline improves
performance up to 15% compared with Twister-pipeline in Figure
6a. The detailed time proportion is the Figure 6b and Figure 6c.
For Twister-pipeline, since data staging time is increasing, its
proportion in Figure 6b does not decrease as the data size
increases. However the proportion of data distribution time keeps
decreasing in Figure 6c for Hybrid-pipeline as job execution time
increases. The runtime control time for both of the pipelines is the
same with different data size since node number is fixed. Because
Twister-pipeline always performs better in distributed job
execution, and data staging time in Twister-pipeline is
significantly higher than data distribution time in Hybrid-pipeline,
the proportion of execution time in Twister-pipeline is less than
that of Hybrid-pipeline. Overall, the Hybrid-pipeline still
performs better than Twister-pipeline

a. Time cost of Twister-pipeline and

Hybrid-pipeline
b. Time proportion of different stages

in Twister-pipeline
c. Time proportion of different stages

in Hybrid-pipeline

0

1

2

3

4

5

6

7

8

6144 12288 18432 24576 30720 36864

Ti
m

e
Co

st
 (t

ho
us

an
d

se
co

nd
)

Data size

Twister-pipeline
Hybrid-pipeline 0%

20%

40%

60%

80%

100%

6144 12288 18432 24576 30720 36864
Data size

Twister-pipeline

Runtime Control Execution Data Staging

0%

20%

40%

60%

80%

100%

6144 12288 18432 24576 30720 36864
Data size

Hybrid-pipeline

Runtime Control Execution Data Staging

Figure 6 Performance comparison chart between Twister-pipeline which only use Twister as
MapReduce runtime and Hybrid-pipeline use both Hadoop and Twister. Input data size is

increased from 6144 to 36864 and core number is fixed to 768

4.2 Scale-up Test
This test is done with an input data size of 24576 sequences. Five
tests were done by using 16, 32, 64, 96, and 128 nodes (i.e. 128,
256, 512, 768 and 1024 cores). We have used the performance on
128 cores as a reference baseline where the speedup can be
calculated using (1):

𝑆𝑛 = 𝐾 ∗ 𝑇𝑘
𝑇𝑛

 (1)

𝑇𝑘 is the time cost of 𝐾cores, 𝑇𝑛 is the time cost of N cores, and
𝑆𝑛 is the speedup on N cores. In our pipeline, 𝑇𝑘 is the time of
running Twister-pipeline on 128 cores where K is 238.
The speedup result is shown in Figure 7. Hybrid-pipeline has
better speedup than Twister-pipeline when the number of cores
increases. From 128 cores to 256 cores, the speedup is around 248
for Twister-pipeline and 254 for Hybrid-pipeline, which shows
highly efficiency for both of the pipelines. However, when the
number of cores keeps increasing, Twister-pipeline becomes less
efficient than Hybrid-pipeline mainly because data staging time
increases. As Twister-pipeline uses file transfer operation from a
single node for data flow between jobs, the network overhead
grows with the compute node number. Therefore, even the data
size is fixed, the data staging phase takes 470 seconds on 128
cores and it takes 996 seconds on 1024 cores to finish the data
distribution. The data staging time of Hybrid-pipeline also
increases as the key/value pair increases. However, it only cost 15
seconds on 128 cores and 108 seconds on 1024 cores. The runtime
control time also increases when core number increases. This is
because Twister daemon number and Hadoop datanode and
tasktracker number equal the number of compute nodes. Hence,
more compute nodes are, more processes needs to be created for
Twister and Hadoop. Naturally the runtime control time increases.
In Figure 8, the execution time of both Twister-pipeline and
Hybrid-pipeline are shown. Twister takes less time on executing
distributed jobs as the core number increases. The time difference
increases when core number increases. It shows that Hadoop has
higher scheduling overhead as well as HDFS has a higher
overhead for more data blocks that on a larger number of cores.
Twister-pipeline took 2283 seconds of execution and Hybrid-
pipeline took 2503 seconds on 1024 cores. However, this factor is
not dominating Hybrid-pipelines executing time when core
number is relatively small.
After adding each portion of time together, even though Hybrid-
pipeline’s distribution job execution time is higher, the overall

execution time of the pipeline of Hybrid-pipeline is lower due to a
relatively small cost on data staging. The speedup of Hybrid-
pipeline in figure 7 shows 15% peak performance that higher
than Twister-pipeline.

4.3 Fault Tolerance Test
The fault tolerance test is done on 96 nodes, 768 cores with an
input size of 18432 sequences, where all the workers on 1 node or
10 nodes are killed in different time during the computation.
To fully test the fault tolerance in HyMR, the failure is done at the
distributed job execution time. We have chosen the failure time at
10%, 25%, 40%, 55%, 70%, 85% of distributed job execution
time inside the pipelines first, then we add the runtime start time
and data distribution time in so the failure times can covers all the
three distributed jobs. This setting gives two fault happens in the
PSA component, one fault happens in the MDS component and
three faults in the MI-MDS component. A fault happens by killing
all the tasks on the given node. For Hadoop component, we
directly kill the task processes from the MapReduce job. And for
Twister component, since the daemon spawns thread to execute
the MapReduce tasks, killing the tasks will result in failure of the
Twister daemons.
Both Hybrid-pipeline and Twister-pipeline are tested with the
workers killed on 1 node and 10 nodes. For a Twister-pipeline, a
Twister daemon failure will result in restarting the MapReduce
job it runs; For the Hybrid-pipeline, if the fault happens within
Hadoop component, the Hadoop runtime will handle the failure by
rescheduling the map task and restarting map/reduce tasks. If the
fault happens within Twister component, a same fault recovery
strategy will be used as in the Twister-pipeline.
Finally, as both of the pipelines are managed by HyMR system,
all the jobs can be automatically recovered once a failure happens.
The fault tolerance test result is shown in Figure 9. In our
experiments, the 10 nodes failure and 1 node failure gives the
same result within Twister-pipeline. This is because either fault
will make the workflow system to restart the Twister runtime and
rerun the MapReduce job. So in our result Figure 8, only 1 time
line is displayed for Twister-pipeline.
In a fault-free execution with input size of 18432, the Twister-
pipeline takes totally 2691 seconds with 1685 seconds of
computation in average to finish while Hybrid-pipeline takes
average 2338 seconds with 1804 seconds of computation to finish.
At time point 10% and 25%, the Hybrid-pipeline was executing

Figure 7 Speed up of Twister-pipeline
and Hybrid pipeline with input data

size 24576

Figure 8 Time cost of three

distributed job PSA, MDS and MI-
MDS in both Twister-pipeline and

Hybrid-pipeline with input size
24576

Figure 9Time cost of Twister-pipeline
and Hybrid-pipeline with fault with

input data size 18432

0

1

2

3

4

5

6

7

0 256 512 768 1024

Sp
ee

du
p

(h
un

dr
ed

s)

Core number

Twister-speedup

Hybrid-speedup
0

2

4

6

8

10

12

14

16

0 256 512 768 1024

Ti
m

e
Co

st
 (

th
ou

sa
nd

 s
ec

on
ds

)

Core number

Twister-execution-time
Hybrid-execution-time

0

0.5

1

1.5

2

2.5

3

3.5

4

10% 25% 40% 55% 70% 85%

Ti
m

e
Co

st
 (t

ho
us

an
d

se
co

nd
s)

Time percentage

Hybrid-10nodes
Hybrid-1node
Twister-1node

Hadoop-PSA component; at time point 55%, 70% and 85%,
Hybrid-pipeline was executing Hadoop-MI-MDS component. So
Hadoop will handle the failure by re-schedule all failed workers to
available slots. Hybrid pipeline with 80 tasks killed on 10 nodes
uses slightly more time than 8 tasks killed on 1 node because of
the scheduling overhead. With Twister-pipeline, since all the
component are executed by Twister, when fault happens, the
HyMR will restart the Twister-runtime at an average time of 267
seconds, then re-run the Twister job. Therefore, Twister-pipeline
takes longer than Hybrid-pipeline to recover from failure. The
Hybrid-pipeline also performs more stable than Twister-pipeline
at different failure time where each core are scheduled with 2 map
tasks where Twister can only handle 1 map task per core. So
Twister takes longer time to recover than Hadoop when the time
point increases within a same component. Take an example at
time point 55%, 70% and 85%, Twister-MI-MDS fails when the
MI-MDS has been executed after 81, 334 and 587 seconds, the
overall Twister-pipeline job execution time increases as well. In
contrast, even though Hadoop-MI-MDS fails at these 3 different
times, since the map task only takes half of a Twister map task
time to finish, the job execution time doesn’t increases much as in
the Twister-pipeline. The last but not least thing to mention is at
time point 40%, as both of the pipelines were execution Twister-
MDS, so the fail recover time for them are the similar, where
Twister-MDS restarts after 173 seconds and HDFS-Twister-MDS
restarts after 143 seconds.

5. Related Work
HyMR uses Hadoop to support MapReduce jobs and Twister to
support iterative MapReduce jobs. Besides Twister, several other
iterative MapReduce frameworks were developed over the past
years. We chose Twister over the other iterative MapReduce
runtimes because it is a light weighted fully fledged framework.
Spark [27] is a MapReduce framework using memory cache to
store the static data during iterative computations. It uses resilient
distributed dataset (RDD) to provide fault tolerance. An RDD is a
read-only collection of objects contains additional information
from other tasks. Once a node fails, RDDs on other nodes can
recover the failed RDD using resilient information. However, this
approach uses additional memory on each compute node. It is not
ideal to solve the memory bound problem such as MDS.
Additionally, Spark is not a standalone runtime because it is based
on another cluster manage system called Nexus [28]. Haloop [29]
is an extension to the existing Hadoop system. Different from
Twister, it uses local disk instead of memory to cache the static
data during each iteration. Although it modified Hadoop job
scheduler to avoid rescheduling overhead from each iteration, its
map and reduce tasks still need to read and write to local disk in
every iteration. Therefore, unlike Twister, it does not eliminate
disk I/O cost. Pregel [30], an iterative graph processing
framework proposed by Google, excels in processing iterative
graph applications, such as PageRank, but lacks support for
general iterative applications.
According to the taxonomy proposed by Yu et al. [31], current
workflow systems can be divided into several categories. HyMR
is a concrete workflow model since the resources has been
allocated during an execution. Different from HyMR, most classic
workflow system built on Grid adopts abstract model. Pegasus
[32] maps complex scientific workflow into various Grid
resources. It focused on optimizing available resources allocation
by using certain artificial intelligence techniques. Kepler [33]
models a workflow as independent components and
communicates through well-defined interfaces. So adding more
components into the workflow will not harm the integrity of

existing ones. It also provides a graphic environment to design
and reuse the Grid workflows. Taverna [34] allows automation of
experimental methods through the use of a number of different
(local or remote) services from a very diverse set of domains –
biology, chemistry and medicine to music, meteorology and social
sciences. It uses XML based language to describe the data model
which includes control flow, data flow, input and processors. All
above workflow systems can enable distributed computing.
However, they are mainly focused on Grid resources allocation
when a job needs to use multiple processors and they do not
directly support MapReduce. In contrast, HyMR focused on
executing efficiently on available resources such as cluster and
cloud by importing Hadoop and Twister.
There are already several existing MapReduce workflow systems.
Sawzall [35] is a script language where its data processing built
on top of Google MapReduce. Sawzall consists by an interpreter
runs in the map phase to instantiate partitions over multiple nodes,
a program which execute once for each partition and an
aggregator accumulates the results from the program to a final
output. It provides an efficient way to schedule data on multiple
machines. Pig Latin [36] is similar to Sawzall, but based on
Hadoop. It has extended features such as cogrouping, which can
be used for join operation. As it is constructed to mimic the
behavior of a relational database, it is more suitable for processing
relational intermediate data inside the dataflow. Oozie [37] is a
workflow system to manage data processing job for Hadoop. It
supports MapReduce job, Hadoop Streaming, Pig and HDFS. Its
design is similar to classical Grid workflow system but mainly
process MapReduce job and store the data into HDFS. MRGIS
[38] is also a scripting-based parallel programming tool, similar to
the above systems. However, it is only specialized for GIS
applications on MapReduce computing infrastructure. CloudWF
[39] is a computational workflow system specially based on cloud
infrastructure where Hadoop is installed. It aims to simplify the
complication of running a general purpose distributed pipeline on
MapReduce and take full potential advantages from the
infrastructure underlying Cloud. Compare to these workflow
systems, the design of HyMR is similar to Oozie, MRGIS and
CloudWF. Decentralization of space and time is achieved by
HyMR execution. The resources from cluster are also fully
utilized by importing Twister and Hadoop. Additionally, none of
the existing workflow system can directly support parallel
iterative applications using MapReduce paradigm. HyMR can
support a pipeline which includes iterative parallel applications
more efficiently. Our previous work introduced Tigr-Twister-
workflow [40] which merges Twister with Tigr-workflow [41] to
support both iterative and non-iterative bioinformatics
applications running on cluster with a web interface. But this
system is less efficient since it lacks several features such as fault
tolerance and distributed file system support.

6. Conclusion and Future Work
In this paper we proposed and implemented a new distributed
workflow system HyMR which is based on composition of
different MapReduce systems: Hadoop and Twister. The pros and
cons of using these two runtimes are analyzed. The architecture of
HyMR is described in detail. We explained how HyMR is
extended to support both MapReduce and iterative MapReduce
applications. A bioinformatics visualization pipeline is proposed
to test HyMR. Several applications including an iterative
application are included in this pipeline. A Twister-pipeline and
Hybrid-pipeline is implemented and used to test the efficiency and
fault tolerance of HyMR. In our experiments, we demonstrated

that the Hybrid-pipeline is more efficient than Twister-pipeline,
which explains the motivation for our HyMR.

In the future, we would like to extend our system on more
dynamic computing resources, such as cloud. A web server could
be established on top layer so the user can submit distributed jobs
using HyMR. .

7. ACKNOWLEDGMENTS
Our thanks to Joe Rinkovsky as a Polar Grid administrator from
UITS in Indiana University and Saliya Ekanayake from SALSA-
HPC group in Indiana University who provided us the SWG
library. This work is under National Health Institute Grant
1RC2HG005806-01 support.

8. REFERENCES
[1] Isard, M., M. Budiu, et al. (2007). Dryad: Distributed data-

parallel programs from sequential building blocks. ACM
SIGOPS Operating Systems Review, ACM Press. 41: 59-72.

[2] Gu, Y. and R. Grossman (2009). "Sector and Sphere: The
Design and Implementation of a High Performance Data
Cloud." Crossing boundaries: computational science, e-
Science and global e-Infrastructure I. Selected papers from
the UK e-Science All Hands Meeting 2008 Phil. Trans. R.
Soc. A 367: 2429-2445.Tavel, P. 2007. Modeling and
Simulation Design. AK Peters Ltd., Natick, MA.

[3] Dean, J. and S. Ghemawat (2008). "MapReduce: simplified
data processing on large clusters." Commun. ACM 51(1):
107-113.

[4] Apache Hadoop. Retrieved April 20, 2010, from ASF:
http://hadoop.apache.org/core/.

[5] Borthakur, D., J. SenSarma, et al. (2011). Apache Hadoop
Goes Realtime at Facebook SIGMOD. Athens, Greece,
ACM. 978: 4503-0661.

[6] Yang, H.-c., A. Dasdan, et al. Map-reduce-merge: simplified
relational data processing on large clusters. Proceedings of
the 2007 ACM SIGMOD international conference on
Management of data. ACM. Beijing, China, ACM.

[7] Ekanayake, J., S. Pallickara, et al. (2008). MapReduce for
Data Intensive Scientific Analyses. Fourth IEEE
International Conference on eScience, IEEE Press.

[8] Qiu X., Ekanayake J., et al. (2009). Using MapReduce
Technologies in Bioinformatics and Medical Informatics.
Using Clouds for Parallel Computations in Systems Biology
workshop at SC09, Portland, Oregon.

[9] Dempster, A.P.; Laird, N.M.; Rubin, D.B. (1977).
"Maximum Likelihood from Incomplete Data via the EM
Algorithm". Journal of the Royal Statistical Society. Series B
(Methodological) 39 (1): 1–38. JSTOR 2984875.
MR0501537.

[10] J.Ekanayake, H.Li, et al. (2010). Twister: A Runtime for
iterative MapReduce. Proceedings of the First International
Workshop on MapReduce and its Applications of ACM
HPDC 2010 conference June 20-25, 2010. Chicago, Illinois,
ACM.

[11] TORQUE resource manager, Garrick Staples, SC '06:
Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, ISBN 0-7695-2700-0

[12] "Hadoop Distributed File System HDFS." Retrieved
December, 2009, from http://hadoop.apache.org/hdfs/.

[13] J. B. MacQueen, "Some Methods for Classification and
Analysis of MultiVariate Observations," in Proc. of the fifth
Berkeley Symposium on Mathematical Statistics and
Probability. vol. 1, L. M. L. Cam and J. Neyman, Eds., ed:
University of California Press, 1967.

[14] K. Rose, E. Gurewwitz, and G. Fox, "A deterministic
annealing approach to clustering," Pattern Recogn. Lett., vol.
11, pp. 589-594, 1990.

[15] J. de Leeuw, "Applications of convex analysis to
multidimensional scaling," Recent Developments in
Statistics, pp. 133-145, 1977.

[16] C. Moretti, H. Bui, K. Hollingsworth, B. Rich, P. Flynn, and
D. Thain, "All-Pairs: An Abstraction for Data Intensive
Computing on Campus Grids," in IEEE Transactions on
Parallel and Distributed Systems, 2010, pp. 33-46.

[17] O. Gotoh, "An improved algorithm for matching biological
sequences," Journal of Molecular Biology vol. 162, pp. 705-
708, 1982.

[18] Needleman, Saul B.; and Wunsch, Christian D. (1970). "A
general method applicable to the search for similarities in the
amino acid sequence of two proteins". Journal of Molecular
Biology 48 (3): 443–53. doi:10.1016/0022-2836(70)90057-4.
PMID 5420325.

[19] Kruskal, J. B. and M. Wish (1978). Multidimensional
Scaling, Sage Publications Inc.

[20] I. Borg, & Groenen, P. J., Modern Multidimensional Scaling:
Theory and Applications: Springer, 2005.

[21] Bae, S.-H. (2008). Parallel Multidimensional Scaling
Performance on Multicore Systems. Proceedings of the
Advances in High-Performance E-Science Middleware and
Applications workshop (AHEMA) of Fourth IEEE
International Conference on eScience, Indianapolis: IEEE
Computer Society.

[22] Bronstein, M. M., A. M. Bronstein, et al. (2006). Multigrid
multidimensional scaling. Numerical Linear Algebra with
Applications, Wiley.

[23] Kearsley, A. J., R. A. Tapia, et al. (1995). The Solution of
the Metric STRESS and SSTRESS Problems in
Multidimensional Scaling Using Newton’s Method. Houston,
Tx, Rice University.

[24] Zhang, B., Y. Ruan, et al. (2010). Applying Twister to
Scientific Applications. Cloud Computing Technology and
Science (CloudCom), 2010 IEEE Second International
Conference Indianapolis, IN, IEEE: 25-32.

[25] Seung-Hee Bae, J. Y. C., Judy Qiu, Geoffrey C. Fox (2010).
Dimension Reduction and Visualization of Large High-
dimensional Data via Interpolation. HPDC'10. Chicago,
Illinois USA.

[26] Priebe, M. W. T. a. C. E. (2006). The Out-of-Sample
Problem for Classical Multidimensional Scaling.
Bloomington, IN, Indiana University.

[27] Zaharia, M., M. Chowdhury, et al. (2010). Spark: cluster
computing with working sets. HotCloud'10 Proceedings of
the 2nd USENIX conference on Hot topics in cloud
computing, Berkeley, CA, USA, ACM.

[28] Hindman, B., A. Konwinski, et al. (2009). Nexus: A
Common Substrate for Cluster Computing.

http://hadoop.apache.org/hdfs/

[29] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael
D. Ernst. 2010. HaLoop: efficient iterative data processing
on large clusters. Proc. VLDB Endow. 3, 1-2 (September
2010), 285-296.

[30] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik,
James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. 2010. Pregel: a system for large-scale graph
processing. In Proceedings of the 2010 international
conference on Management of data (SIGMOD '10). ACM,
New York, NY, USA, 135-146.
DOI=10.1145/1807167.1807184
http://doi.acm.org/10.1145/1807167.1807184

[31] Yu, J. and R. Buyya (2005). "A Taxonomy of Workflow
Management Systems for Grid Computing." Journal of Grid
Computing 3(3): 171-200.

[32] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S.
Patil, M. H. Su, K. Vahi, M. Livny. Pegasus: Mapping
Scientific Workflow onto the Grid. Across Grids Conference
2004, Nicosia, Cyprus, 2004.

[33] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger,
M. Jones, E. A. Lee, J. Tao, and Y. Zhao. Scientific
Workflow Management and the KEPLER System.
Concurrency and Computation: Practice & Experience,
Special Issue on Scientific Workflows, to appear, 2005

[34] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M.
Greenwood, T. Carver and K. Glover, M.R. Pocock, A.
Wipat, and P. Li. Taverna: a tool for the composition and

enactment of bioinformatics workflows. Bioinformatics,
20(17):3045-3054, Oxford University Press, London, UK,
2004.

[35] R. Pike, S. Dorward, R. Griesemer, and S. Quinlan.
Interpreting the data: Parallel analysis with Sawzall.
Scientific Programming, 13(4):277–298, 2005.

[36] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A.
Tomkins. Pig latin: a not-so-foreign language for data
processing. In Proceedings of the 2008 ACM SIGMOD
international conference on Management of data (SIGMOD),
pages 1099–1110. ACM, 2008.

[37] "Oozie." from http://yahoo.github.com/oozie/.
[38] Chen, Q., L. Wang, et al. (2008). MRGIS: A MapReduce-

Enabled High Performance Workflow System for GIS.
eScience '08. IEEE Fourth International Conference on.
Indianapolis, IN.

[39] M.G. Jaatun, G. Zhao, and C. Rong (Eds.): CloudWF: A
Computational Workflow System for Clouds Based on
Hadoop. CloudCom 2009, LNCS 5931, pp. 393–404, 2009

[40] Hemmerich, C., A. Hughes, et al. (2010). Map-Reduce
Expansion of the ISGA Genomic Analysis Web Server.
CloudCom 2010. Indianapolis, IN.

[41] "TIGR-workflow." From: http://tigr-
workflow.sourceforge.net/.

http://doi.acm.org/10.1145/1807167.1807184
http://yahoo.github.com/oozie/
http://tigr-workflow.sourceforge.net/
http://tigr-workflow.sourceforge.net/

	1. INTRODUCTION
	The computing power of individual computers and small clusters is clearly not able to deal with the ever-growing amount of data collected by modern instruments. New parallel programming models have been proposed to address data intensive problems It i...
	2. HyMR Workflow System
	2.1 MapReduce and Hadoop

	3. A Bioinformatics Visualization Pipeline
	3.1 Pairwise Sequence Alignment
	3.2 Multidimensional Scaling
	3.3 MDS Interpolation
	4.2 Scale-up Test
	4.3 Fault Tolerance Test

	5. Related Work
	6. Conclusion and Future Work
	7. ACKNOWLEDGMENTS
	8. REFERENCES

