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ABSTRACT 
Many distributed computing models have been developed for high 
performance processing of large scale scientific data. Among 
them, MapReduce is a popular and widely used fine grain parallel 
runtime.  Workflows integrate and coordinate distributed and 
heterogeneous components to solve the computation problem 
which may contain several MapReduce jobs. However, existing 
workflow solutions have limited supports for important features 
such as fault tolerance and efficient execution for iterative 
applications. In this paper, we propose HyMR: a hybrid 
MapReduce workflow system based on two different MapReduce 
frameworks. HyMR optimizes scheduling for individual jobs and 
supports fault tolerance for the entire workflow pipeline. A 
distributed file system is used for fast data sharing between jobs. 
We compare a pipeline using HyMR with the workflow model 
based on a single MapReduce framework. Our results show that 
the hybrid model achieves a higher efficiency. 

Categories and Subject Descriptors 
C.2.4 [Computer-Communication Networks]: Distributed 
Systems – Distributed Applications; D.2.11 [Software 
Engineering]: Software Architectures – Domain-specific 
architectures. 

General Terms 
Algorithms, Management, Performance, Design 

Keywords 
MapReduce, Iterative Algorithms, Workflow Management 

1. INTRODUCTION 
The computing power of individual computers and small clusters 
is clearly not able to deal with the ever-growing amount of data 
collected by modern instruments. New parallel programming 
models have been proposed to address data intensive problems It 
is well understood that parallel runtimes can handle pleasingly 
parallel applications. Further, many of the tools are computing 
intensive, and some of them are iterative algorithms. Similar to 
these tools, current distributed workflow has large amount of data 
and heavy computations. Apparently, a workflow system based on 
single machine is not sufficient for large amount of data as many 
of the tools require the use of high-performance computing 
resources in order to achieve acceptable performance.  
New parallel programming models have been developed to 

alleviate the problem of increasing size of data. This is 
exemplified by MapReduce [3] and runtime systems include 
Dryad [1], Sector/Sphere [2] and Hadoop [4]. Hadoop is an open 
source MapReduce implementation and has been adopted by large 
corporation, such as Facebook [5], Yahoo [6] and academic 
research organizations [7-8]. MapReduce allows a user to specify 
a map function which reads a key/value pair and generates a set of 
intermediate key/value pairs; a reduce function merges all the 
associate values belonging to the same key. The applicability of 
MapReduce has been constrained in particular to a class of 
pleasingly parallel applications. For more complicated parallel 
applications, such as iterative applications for many data mining 
and data analysis algorithms (e.g. Expectation Maximization 
algorithms [9]), Hadoop is not sufficient. Within a parallel 
iterative application, Hadoop treats each iteration as a standalone 
MapReduce job, naturally the overhead of restarting and 
rescheduling map reduce tasks through disc access grows as the 
iterations increases.  
To address this problem, Twister [10] proposed an iterative 
MapReduce framework, which considers an iterative parallel 
application as one iterative MapReduce job. So the map and 
reduce tasks are scheduled before it starts and the static data is 
kept in distributed memory to avoid overhead of re-loading during 
each iteration. Several other iterative MapReduce frameworks 
[10, 27-30] have been developed as well. Even though Twister 
can run iterative parallel applications much faster than Hadoop, it 
lacks distributed file system and node level fault tolerance 
support, which limits its applicability in a workflow with multiple 
MapReduce jobs and large data flow between jobs. 
To overcome the shortcomings of Hadoop and Twister in a 
workflow that contains iterative MapReduce jobs, we have built a 
Hybrid-MapReduce workflow system (HyMR), which supports 
both Hadoop and Twister runtimes to composite workflows with 
multiple MapReduce jobs. Firstly, iterative jobs inside a pipeline 
can be implemented using Twister instead of Hadoop. HyMR can 
handle iterative jobs better using Twister than Hadoop. Secondly, 
we added support of Hadoop Distributed File System (HDFS) to 
Twister, so data flow between jobs in pipeline uses HDFS and 
achieves a better performance than transferring data manually 
among local file system between compute nodes. Therefore the 
total time of processing workflow decreases accordingly. Thirdly,  
as Hadoop  has built in fault tolerance support, the non-iterative 
applications were implemented using Hadoop. If a compute node 
fails during the execution, rather than restarting the whole job, 
HyMR leverages Hadoop to handle node failure. Lastly, we added 
multiple-user support and used XML to record the workflow’s 
status, which can be extended to webserver for a user to monitor 
and submit jobs online. 
We have evaluated HyMR on real applications using a pipeline 
contains three distributed jobs and several single node jobs. The 
pipeline contains two MapReduce jobs and one iterative 
MapReduce job. We have implemented the pipeline in Twister-
workflow and in HyMR-workflow to compare the results.  
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This paper is organized as follows: Section 2 presents the detailed 
design and implementation of HyMR, Section 3 introduces the 
workflow pipeline and some improvements over HyMR. Section 
4 demonstrates the efficiency of HyMR with experiments that 
include performance comparison, scale up test and fault tolerance 
test. In Section 5, we discuss related work of iterative MapReduce 
and distributed workflow system. Section 6 provides a summary 
of the contribution and outlines future work. 

2. HyMR Workflow System 
HyMR comprises an interface, an instance controller, a job 
controller and a runtime support system as shown in Figure 1.  
HyMR can run on traditional HPC clusters and supports 
TORQUE [11]. When a workflow is submitted, HyMR interacts 
with TORQUE to request resources. Once the resources are 
allocated, HyMR will configure and start runtimes.  Subsequently, 
jobs in the workflow are executed. 
User interface enables a user to composite a workflow by 
configuring a definition file. The file describes a specific 
workflow, which include configurations of Hadoop, Twister and 
job executions. The job definition file can be written either in 
XML or a simple properties file. The interface can generate an 
instance file in XML format so that a user can monitor the 
progress of the instance. This design has the potential to enable 
the user monitoring and submitting jobs from a web server.  
Instance controller controls a workflow instance as an actual 
execution copy of a workflow definition. It generates a Direct 
Acyclic Graph (DAG) based on the description given in the 
definition file where the vertices are jobs and the edges are 
dependencies between jobs. The instance controller processes the 
control flow accordingly by invoking the job controller when all 
the dependents of a job are finished. If a workflow contains a 
MapReduce job, the instance controller will notify the runtime 
controller system where a corresponding runtime will start if 
needed.  
Runtime controller starts Hadoop and Twister at beginning of 
the workflow, which is called persistent runtime. Because using 
TORQUE, the compute nodes allocated for an instance are 
consistent during the execution. Therefore for a pipeline contains 
more than one distributed job, the persistent runtime reduces cost 
since it only starts and stops the runtimes once, instead of starting 
a runtime at the beginning and stopping the runtime at the end of 
each distributed job. After an instance is completed or failed, the 
controller will then shut down the runtimes. 
Job controller controls a job execution. An instance controller 
will invoke a job execution when all the jobs that a job depends 
on are finished inside the instance. A job controller can support 
jobs varying from single node job, such as a single thread and 
multi-thread jobs, to distributed jobs, such as MapReduce and 
iterative MapReduce jobs. As we have added support for Twister 
fault tolerance, for a Twister job, a Twister fault detector will be 
invoked and keep checking whether every daemon is alive. 
Twister fault detector will kill the current job once it detects a 
Twister daemon failure. Such fault detector is not necessary for 
Hadoop since it can handle node level fault tolerance by itself. 
Once a job fails during execution, the job controller will notify the 
instance controller to restart the corresponding runtime if this 
failure is a Hadoop or Twister runtime failure. Besides runtime 
failures, if a job fails, the job controller will simply return an error 
to instance controller and be marked as failed. If retry times of a 
certain job is below maximum allowed number, instance 

controller will restart the job. Otherwise, it will kill all the other 
running jobs and marked this instance as failed. 
Hadoop and Twister have different features. By using HyMR for a 
pipeline with multiple MapReduce jobs, we are trying to 
eliminated the shortcomings of the two runtimes and achieve a 
better performance by integrating them. 

 
Figure 1 The design and architecture of HyMR interacts 

with a cluster 

2.1 MapReduce and Hadoop 
MapReduce is a parallel programming model proposed by Google 
to support large-scale data processing. Hadoop is an open source 
implementation of MapReduce with a distributed file system 
(HDFS) [12]. Each MapReduce job takes a set of key/value pairs 
as input, and produces a set of key/value pairs. The computation 
of MapReduce jobs is split into 2 phases: map and reduce. In map 
phase, map function takes an input key/value pair, read the data 
accordingly from HDFS, and produces a set of intermediate 
key/value pairs. Hadoop groups together all intermediate values 
associated with the same intermediate key and passes them to the 
reduce function. In reduce phase, each reduce operation accepts 
an intermediate key and all values associate with that key. It 
merges these values to form a possibly smaller set of values, emits 
key/value pairs of the final output, and writes the final output to 
HDFS. The execution of a typical MapReduce job on Hadoop is 
shown in Figure 2a. 
Hadoop adopts master-slave architecture.  The master node runs a 
namenode, a secondary namenode and a job tracker. The 
namenode is mainly used for HDFS for hosting the file system 
index; the secondary namenode can generate snapshots of the 
namenode's memory structures, thus preventing file system 
corruption and reducing loss of data; the job tracker allocates 
work to the task tracker nearest to the data with an available slot. 
The slave node runs a datanode and a task tracker: datanode 
contains blocks of data inside HDFS where multiple datanodes 
can serve up distributed data over network; task tracker will 
spawn java processes as workers to execute the work received 
from job tracker.  
Hadoop supports fault tolerance in both MapReduce execution 
and HDFS. HDFS supports fault tolerance by providing file 
replicas among the slave nodes. In case one or several datanodes 
fail, the integrity of the distributed files won’t be harmed by using 



the replicas from other running datanodes. During a MapReduce 
job execution, once a task tracker fails, all the unfinished tasks on 
that task tracker will be scheduled to the empty slots of other task 
tracker. So if any of the slave nodes fail during an execution of 
Hadoop MapReduce job inside a workflow, HyMR will let 
Hadoop handle the failure. However, if the namenode or job 
tracker fails, Hadoop will fail and wait for the user to manually 
restart it. Therefore, to overcome this, HyMR will automatically 
restart Hadoop and the MapReduce job once the master node fails. 

2.2 Iterative MapReduce and Twister 
Many data analysis applications require iterative computations, 
such as K-Means [13], Deterministic Annealing Clustering [14] 
and Dimension Reduction algorithm [15]. This type of 
applications can be parallelized with MapReduce paradigm. 
However, they have a unique feature that is to keep running Map 
and Reduce iteratively until the computation satisfies a condition 
to converge to a final result. 
Hadoop has been proved to be useful in large scale data parallel 
distributed computing job. However, it does not directly support 
iterative data analysis applications. Instead, the iterations must be 
orchestrated manually using a driver program where each iteration 
is piped as a separate MapReduce job. There are several 
problems: Firstly, as the iteration number is manually set by the 
user, it is impossible to make the program converge to meet a 
certain condition; Secondly, the static data needs to be load from 
disk to memory in every iteration which can generate  high 
network I/O and disk I/O overhead; Thirdly, the job tracker needs 
to reschedule map and reduce tasks for every iteration, which 
brings considerable scheduling overhead. 
We use Twister, an iterative MapReduce framework to run the 
iterative parallel applications inside our workflow. Twister uses 
pub/sub messaging for all the communication/data transfer where 
a broker will be running on one of the compute nodes during the 
execution. This node is classified as head node in HyMR. All the 
other nodes are classified as compute nodes where the Twister 
daemon runs on.  Twister daemon can connect to broker and 
spawn threads executing map and reduce tasks. 
The client driver of Twister is used to support iterations of map 
and reduce tasks. The map and reduce tasks won’t exit after one 
iteration unless the client driver sends the exit signal. So an 
iterative MapReduce job is not considered as multiple MapReduce 
jobs as in Hadoop. Twister supports for long running mappers and 
reducers with an in memory data model. This design eliminates 
the overhead of data reloading from disk to memory across 
iteration boundaries. Twister schedules map and reduce tasks 
before the first iteration so that they are processed by the same 
mappers and reducers during each iteration for locality. This can 
eliminate the scheduling overhead of task rescheduling. In 
summary, Twister is optimized for iterative parallel applications, 
where Hadoop doesn’t perform well. Even though Twister runs 
fast for iterative parallel applications, current implementation of 
Twister lacks several features for large-scale usage: 
1) Distributed file system support. Hadoop uses HDFS for 

large distributed data storage while Twister needs data 
staging before MapReduce job starts. Usually in data staging 
phase, a Network File System (NFS) is used to store all the 
data first, and then the user needs to partition the file and 
distribute the input files to each compute node’s local disk. A 
typical Twister MapReduce workflow job is shown in Figure 
2b. This could result in a high network overhead if several 
MapReduce jobs were piped on a large number of compute 

nodes. The data transfer time cost from one MapReduce 
job’s result to another MapReduce job’s input will be high. 

2) Fault tolerance. Even though Twister stated that it supports 
fault tolerance in a heartbeat and checkpoint fashion, in 
practice, Twister can detect if daemon running on compute 
node has failed, but it couldn’t resume the running 
application. So the application will be paused until the user 
manually restarts the Twister daemons and the MapReduce 
job. This could result in a high overhead when the user 
doesn’t monitoring the Twister MapReduce job 
continuously. 

3) Dynamic Scheduling. Twister can be faster on iterative 
applications than Hadoop by using static scheduling since it 
eliminates the rescheduling overhead. However, for non-
iterative MapReduce job, static scheduling could result in 
slow execution while each map task’s execution time is 
unbalanced. A typical Twister usage is to partition tasks 
beforehand. Compared to Hadoop, which can utilize the 
resources by scheduling map task dynamically, Twister runs 
map tasks where the partition number is equal or propotional 
to core number. 
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Figure 2 (a) Hadoop Job (b) Twister Job  

(c) Twister Job with HDFS  
The data staging for (a) and (c) is handled by HDFS 

implicitly. For (b), an explicit data staging is happened 
before Twister job 

2.3 HyMR improvements 
HyMR uses a static node allocation while executing a pipeline. As 
the node list will be given by TORQUE at the beginning of 
workflow, HyMR will select one of the nodes as head node where 
it runs namenode, secondary namenode and job tracker for 
Hadoop, and broker  for Twister; all the other nodes are compute 
nodes where they run as datanode, task tracker for Hadoop and 
Twister daemon for Twister.  
HyMR made several improvements attempting to solve the 
problem that Hadoop has with iterative applications and Twister 
has with multiple MapReduce job in a pipeline: 
Faster execution: because Hadoop runtime is not efficient for 
iterative parallel applications where Twister is highly efficient, 
using Twister for iterative parallel applications inside a pipeline 
can greatly improve the performance over a pipeline than using 
just Hadoop. Therefore, inside a pipeline executed by HyMR, all 
the iterative parallel applications are run on Twister. The 
performance gain from hybrid usage of Twister and Hadoop is 
obvious compared to Hadoop alone strategy. 
Distributed File system support: a pipeline with only Twister 
lacks the support of distributed file system. Even though Twister 
can process iterative parallel applications much faster than 
Hadoop with data already distributed onto local disk of each 



compute node, the file partition and distributing could still be time 
consuming. When a Twister MapReduce job finishes, the output 
data is written to a shared storage. The next MapReduce job needs 
to perform data staging phase again for the previous output data. 
Hence, we integrated Twister with HDFS to support component 
inside HyMR, where the Twister MapReduce job can directly 
write and read data from HDFS without having the data staging 
phase beforehand. This may cause slower execution of the 
distributed job where HDFS I/O has higher overhead than local 
disk. But this could result in a faster execution for a pipeline 
consists by multiple MapReduce job to avoid intermediate data 
staging. So a pipeline uses HyMR will be faster than not only a 
purely Hadoop pipeline, but also a purely Twister pipeline during 
a fault-free execution. An HDFS-enabled Twister MapReduce 
component inside HyMR is shown in Figure 1c. The data staging 
phase are not needed anymore, and similar to Hadoop MapReduce 
job, the HDFS enabled Twister MapReduce workflow is 
considered as one job. 
Better Fault Tolerance: In our hybrid MapReduce model, we use 
Hadoop for non-iterative applications and Twister for iterative 
applications. If any of the tasks fails during the execution of a 
Hadoop job, HyMR will not be notified since the Hadoop will 
handle the fault. However, if the process on headnode fails, the 
job controller in HyMR will be notified and restart Hadoop and 
MapReduce job. Additionally, since the iterative MapReduce jobs 
have to be executed on Twister.  Twister handles fault tolerance 
between iterations as checkpoints for all nodes. Currently it 
doesn’t provide node level fault tolerance support. Once one or 
more Twister daemons fail during the computation, Twister client 
driver will be paused unless the user manually kill it and restart 
the whole process.  To address this issue, we have implemented a 
heartbeat failure checker for Twister inside the job controller as 
mentioned above. The instance controller will immediately 
terminates the Twister job, restart Twister and reschedule the 
Twister job inside the pipeline once a failure of Twister daemon is 
detected. In this way, a user doesn’t need to monitor the pipeline 
all the time and manually reschedule the job. This mechanism can 
shorten the recovery between the runtime failure and when the 
user discovers it. 

3. A Bioinformatics Visualization Pipeline 
We have implemented a bioinformatics data visualization pipeline 
using HyMR in two ways. One Hybrid-pipeline is to use our 
hybrid model that MapReduce jobs are implemented by Hadoop 
and iterative MapReduce job are implemented by Twister with 
HDFS. The other Twister-pipeline is to use Twister as a unified 
parallel framework for all the distributed jobs. This data 
visualization pipeline contains three distributed jobs and several 
single node jobs. Among the distributed jobs, Pairwise Sequence 

Alignment and MDS Interpolation are MapReduce jobs while 
Multidimensional Scaling is an iterative MapReduce job. 
The Twister-pipeline is shown in Figure 3. The first job, “Input 
File Splitter” splits the input file into a sample file and an out-
sample file, which are required in Twister Pairwise Sequence 
Alignment (Twister-PSA) and Twister MDS Interpolation 
(Twister-MI-MDS). A data staging is required for each Twister 
MapReduce job for fast execution where the staging area is the 
local disk on each compute node. Therefore, files are partitioned 
and distributed before generating the partition data for Twister 
MapReduce job. Because the outputs from Twister-PSA are 
already partitioned as matrix files, before the Twister 
Multidimensional Scaling (Twister-MDS) job begins, only a file 
distributor is needed for data staging. Finally, after all the 
MapReduce jobs are finished, the job “Merge Result” will merge 
the sample result and out-sample result to generate a final output.  

 
Figure 4 A distributed bioinformatics visualization 
pipeline based hybrid usage of Hadoop and Twister 

The Hybrid-pipeline is shown in Figure 4. It is very similar to the 
Twister-pipeline. But it only has two single node jobs: “Input File 
Splitter” and “Merge Result”, which are the same components as 
in Twister-pipeline. No explicit data staging phase is needed as 
data are stored in shared HDFS. For Hadoop Pairwise Sequence 
Alignment (Hadoop-PSA) and Hadoop MDS Interpolation 
(Hadoop-MI-MDS), the distributed input files are put into the 
HDFS before the MapReduce job starts; the distributed input data 
for HDFS Twister Multidimensional Scaling (HDFS-Twister-
MDS) can be read directly from output of Hadoop-PSA inside 
HDFS.  
As Figure 3 and Figure 4 show, even though these two pipelines 
have similar DAG, the data flow of Twister-pipeline is more 
complicated than that of Hybrid-pipeline. The simplified DAG of 
Hybrid-pipeline shows that all the intermediate data are stored in 

 
Figure 3 A distributed bioinformatics visualization pipeline based on Twister 



HDFS, which is highly optimized for handling parallel file 
transferring. 

3.1 Pairwise Sequence Alignment 
Sequence alignment arranges the sequences of DNA, RNA, or 
protein to identify similar regions. Pairwise sequence alignment 
(PSA) does all-pair sequence alignment over a given sequence 
dataset, which is usually in FASTA format, where the result is 
generated as an all-pair dissimilarity matrix [16]. There are many 
pairwise sequence alignment algorithms, such as Smith-
Waterman-GOTOH (SWG) [17] and Needleman-Wunsch [18]. In 
this particular pipeline, we use SWG algorithm for the each pair’s 
sequence alignment since our SWG java version is implemented 
as a light weighted library. Despite the different alignment 
algorithms, the parallelization for calculating the dissimilarity 
matrix remains the same, called all-pairs problem 
The parallelization of Twister-PSA and Hadoop-PSA is also the 
same. The input FASTA format gives a sequence begins with a 
single-line description, followed by lines of sequence data. It is 
partitioned into row blocks, where each row block contains the 
same number of sequences. Each row block pairs compute a result 
distance matrix block. The structure of the parallelized result 
matrix is given in Figure 5.  

 
Figure 5 Architecture of parallel pairwise sequence 

alignment 
As shown in Figure 5, the dissimilarity matrix can be computed 
using N*(N+1)/2 blocks where N is the number of row blocks. In 
the given example, the diagonal blocks need to be computed, and 
block(0,1), block(1,N) and block(N,0) need to be computed where 
the block(1,0), block(N,1) and block(0,N) are symmetric to them 
correspondingly. In traditional all-pairs problem, each matrix 
block is considered as a map task. If there are N input row blocks 
from the sequence file, there will be N*(N+1)/2 map tasks and N 
reduce tasks. In a Hybrid-pipeline, Twister requires the partition 
number equals to the total core number of the compute nodes. 
Therefore, the partition number in Hadoop component should also 
be the same for comparison. However, as we have tested this 
pipeline on hundreds of cores scale, the number of map tasks for 
Hadoop-PSA will be too many with traditional method. This 
could result in huge cost in scheduling of map tasks. Therefore, 
we have proposed a new way of giving key/value pairs to the 
Hadoop map tasks. 
In our implementation, an entire matrix row block, which contains 
all the N blocks in that row, will be considered as a map task. In 
Figure 5, the row block 0 contains block(0,0), block(0,1) to 
block(0,N). Each map task contains either N/2 or (N+1)/2 matrix 

block computation. In this way, the number of map tasks can be 
reduced from N*(N+1)/2 to N where the granularity of each map 
task is increased. This could also contribute to reducing the job-
scheduling overhead in Hadoop. As each task is computational 
intensive and has nearly equal amount of computation, this new 
assignment should improve overall computation efficiency. 

3.2 Multidimensional Scaling 
Multidimensional scaling (MDS)[19] is a set of related statistical 
techniques often used in information visualization for exploring 
similarities or dissimilarities in data.  A MDS algorithm can read 
from a dissimilarity matrix and assign a location for each item in 
the matrix from original dimensional space to an L-dimensional 
space. Scaling by Majorizing a Complicated Function (SMACOF) 
[20] algorithm is one of the MDS algorithms that have been 
proved to be fast and efficient on a distributed system [21-22]. It 
uses an Expectation Maximum (EM) method to minimize the 
object function value, called stress of target dimensional space 
mapping [23]. We use parallel SMACOF application inside our 
pipeline. 
As the input of MDS is a dissimilarity matrix, the output from 
PSA component can be directly read as input for MDS component 
in the pipeline. In both Twister and Hybrid pipelines, we only 
used Twister-MDS as the second distributed component in the 
workflow. The iterative MapReduce SMACOF application uses 
two MapReduce computations in a single iteration that involves 
one matrix multiplication and one stress calculation [24]. Hadoop 
is expected to be highly inefficient for this application. The 
difference between the Twister-MDS inside these two pipelines is 
that in the Twister-pipeline, the partitioned matrixes are 
transferred and read from each compute node’s local disk; in the 
Hybrid-pipeline, Twister-MDS load matrix data directly from 
HDFS. 

3.3 MDS Interpolation 
As the memory usage for SMACOF is O(N2), it has become a 
limitation for running million scale input sequences on parallel 
MDS application. To overcome this problem, Bae et al. [25] has 
proposed a simple interpolation approach based on pre-mapped 
MDS result of a sample set selected from the given data. The 
algorithm proposed is called Majorizing Interpolation MDS (MI-
MDS). 
As the input for MI-MDS is the mapping result from MDS and a 
set of sequences, we split the input sequences of pipeline into two 
sets:  one is called sample set, another is called out-sample set 
[26]. The PSA and MDS can be applied on the sample set, and 
generate the sample mapping result. Then by using the sample 
mapping result and the out-sample set, we can execute the MI-
MDS to get the out-sample result. Finally, at the end of the 
pipeline, the sample result and out-sample result can be merged to 
the final output. 
As the interpolated points from out-sample set in MI-MDS are 
independent from each other, the MI-MDS algorithm is pleasingly 
parallel. However, a sample mapping result from MDS is shared 
for every worker. We have implemented Hadoop-MI-MDS for 
Hybrid-pipeline and Twister-MI-MDS for Twister-pipeline. In 
both implementations, the sample mapping result is read from a 
shared location where the size of it is very small. Hadoop-MI-
MDS uses the HDFS to store the out-sample data. Twister-MI-
MDS partitions out-sample set first, and then transfer it to each 
compute node’s local disk. And in Twister-pipeline, out-sample 
data partitioning is started in parallel with sample data 
partitioning. 



4. Experiments 
The experiments were carried out on PolarGrid (PG) cluster using 
129 nodes, which contains 1 head node and 128 compute nodes. 
PG cluster is composed of IBM HS21 Bladeservers and IBM 
iDataPlex dx340 rack-mounted servers with Red Hat Linux. The 
compute nodes in our experiments are iDataPlex dx340 rack-
mount servers with 8-core nodes. So the total number of cores we 
used is up to 1024. The data is selected within 16S rRNA data 
from the NCBI database. The total input sequence number is 
36864. All of the tests ran on Twister-pipeline and Hybrid-
pipeline. Because MDS component needs an average number of 
400 iterations to converge, we did not implement Hadoop-pipeline 
which will take too long to complete. 

4.1 Performance Comparison 
This test ran on 96 nodes (768 cores) with the number of 
sequences ranging from 6144 to 36864. Half of the sequence data 
is classified as sample set and the other half is out-sample set. 
This test aims to demonstrate the overall performance of Hybrid-
pipeline is better for large data compared to Twister-pipeline. 
These two pipelines have been described in section 3. The 
execution time of Twister-pipeline can be divided into three 
portions: data staging time, job execution time and runtime 
control time. Before the execution of each Twister MapReduce 
job, input data is fetched to each compute node’s local disk. The 
data-staging process includes file partitioning, creation of local 
directories on each compute node, and file transferring. The 
overall execution time comprises the execution time of Twister-
PSA, Twister-MDS and Twister-MI-MDS. The time of reading 
and writing data to local disk is also calculated. Runtime control 
time is the time spent on starting and stopping Twister runtime by 
HyMR. The time of Hybrid-pipeline can be divided into the same 
three proportions as well. The data staging time is the time taken 
by Hadoop to partition and scatter the key/value pairs before the 
execution of map tasks. The execution time in Hybrid-pipeline 
includes the time of executing Hadoop-PSA, HDFS-Twister-MDS 
and Hadoop-MI-MDS. The time of reading from and writing to 
HDFS is also considered as part of the execution time. The 
runtime control time is the time to start and stop both Hadoop and 
Twister. A comparison of the overall time of these two different 
pipelines is shown in Figure 6a. Hybrid-pipeline has lower time 
cost than Twister-pipeline. The time difference between two 

pipelines grows as the data size increases with details shown in 
Figure 6b and 6c. 
For Twister-pipeline, data staging includes partitioning and 
transferring the sample/out-sample FASTA files before Twister-
PSA and Twister-MI-MDS components and the sample 
dissimilarity matrices before Twister-MDS. The out-sample 
FASTA files have smaller sizes compared to the dissimilarity 
matrices, so the data staging time for Twister-pipeline increased 
from 459 seconds to 1389 seconds mainly because of the 
increasing time of transferring each 2D matrix to the compute 
node. In Hybrid-pipeline, data scatter only happens inside the 
Hadoop-PSA and Hadoop-MI-MDS components. There is no data 
distribution time for HDFS-Twister-MDS as it can directly read 
partitioned matrices from the output of Hadoop-PSA in HDFS. 
The data partition time does not increase because the size of input 
file only increases from 3MB to 18MB. The number of key/value 
pairs is fixed to two times the core number of map tasks for both 
of Hadoop-PSA and Hadoop-MI-MDS. Therefore, the data 
distribution time of Hadoop-pipeline remains around 65 seconds. 
As mentioned earlier, job execution time includes the time of 
reading and writing data for both of the pipelines. Hybrid-
pipeline’s execution time is higher than that of Twister-pipeline as 
reading from HDFS is slower than reading from a local disk on 
each compute node. Scheduling overhead in Hybrid-pipeline is 
higher than Twister-pipeline because Hadoop adopts dynamic 
scheduling while Twister adopts a static scheduling. Runtime 
control time of Hybrid-pipeline is higher than Twister-pipeline 
because starting both Hadoop and Twister takes more time than 
only starting Twister. 
In this experiment we illustrate that Hybrid-pipeline improves 
performance up to 15% compared with Twister-pipeline in Figure 
6a. The detailed time proportion is the Figure 6b and Figure 6c. 
For Twister-pipeline, since data staging time is increasing, its 
proportion in Figure 6b does not decrease as the data size 
increases. However the proportion of data distribution time keeps 
decreasing in Figure 6c for Hybrid-pipeline as job execution time 
increases. The runtime control time for both of the pipelines is the 
same with different data size since node number is fixed. Because 
Twister-pipeline always performs better in distributed job 
execution, and data staging time in Twister-pipeline is 
significantly higher than data distribution time in Hybrid-pipeline, 
the proportion of execution time in Twister-pipeline is less than 
that of Hybrid-pipeline. Overall, the Hybrid-pipeline still 
performs better than Twister-pipeline 
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Figure 6 Performance comparison chart between Twister-pipeline which only use Twister as 
MapReduce runtime and Hybrid-pipeline use both Hadoop and Twister. Input data size is 

increased from 6144 to 36864 and core number is fixed to 768 



4.2 Scale-up Test 
This test is done with an input data size of 24576 sequences. Five 
tests were done by using 16, 32, 64, 96, and 128 nodes (i.e. 128, 
256, 512, 768 and 1024 cores). We have used the performance on 
128 cores as a reference baseline where the speedup can be 
calculated using (1): 

𝑆𝑛 = 𝐾 ∗  𝑇𝑘
𝑇𝑛

   (1) 

𝑇𝑘 is the time cost of 𝐾cores, 𝑇𝑛 is the time cost of N cores, and 
𝑆𝑛  is the speedup on N cores. In our pipeline, 𝑇𝑘 is the time of 
running Twister-pipeline on 128 cores where K is 238. 
The speedup result is shown in Figure 7. Hybrid-pipeline has 
better speedup than Twister-pipeline when the number of cores 
increases. From 128 cores to 256 cores, the speedup is around 248 
for Twister-pipeline and 254 for Hybrid-pipeline, which shows 
highly efficiency for both of the pipelines. However, when the 
number of cores keeps increasing, Twister-pipeline becomes less 
efficient than Hybrid-pipeline mainly because data staging time 
increases. As Twister-pipeline uses file transfer operation from a 
single node for data flow between jobs, the network overhead 
grows with the compute node number. Therefore, even  the data 
size is fixed, the data staging phase takes 470 seconds on 128 
cores and it takes 996 seconds on 1024 cores to finish the data 
distribution. The data staging time of Hybrid-pipeline also 
increases as the key/value pair increases. However, it only cost 15 
seconds on 128 cores and 108 seconds on 1024 cores. The runtime 
control time also increases when core number increases. This is 
because Twister daemon number and Hadoop datanode and 
tasktracker number equal the number of compute nodes. Hence, 
more compute nodes are, more processes needs to be created for 
Twister and Hadoop. Naturally the runtime control time increases. 
In Figure 8, the execution time of both Twister-pipeline and 
Hybrid-pipeline are shown. Twister takes less time on executing 
distributed jobs as the core number increases. The time difference 
increases when core number increases. It shows that Hadoop has 
higher scheduling overhead as well as HDFS has a higher 
overhead for more data blocks that on a larger number of cores. 
Twister-pipeline took 2283 seconds of execution and Hybrid-
pipeline took 2503 seconds on 1024 cores. However, this factor is 
not dominating Hybrid-pipelines executing time when core 
number is relatively small. 
After adding each portion of time together, even though Hybrid-
pipeline’s distribution job execution time is higher, the overall 

execution time of the pipeline of Hybrid-pipeline is lower due to a 
relatively small cost on data staging. The speedup of Hybrid-
pipeline in figure 7 shows  15% peak performance that higher 
than Twister-pipeline. 

4.3 Fault Tolerance Test 
The fault tolerance test is done on 96 nodes, 768 cores with an 
input size of 18432 sequences, where all the workers on 1 node or 
10 nodes are killed in different time during the computation. 
To fully test the fault tolerance in HyMR, the failure is done at the 
distributed job execution time. We have chosen the failure time at 
10%, 25%, 40%, 55%, 70%, 85% of distributed job execution 
time inside the pipelines first, then we add the runtime start time 
and data distribution time in so the failure times can covers all the 
three distributed jobs. This setting gives two fault happens in the 
PSA component, one fault happens in the MDS component and 
three faults in the MI-MDS component. A fault happens by killing 
all the tasks on the given node. For Hadoop component, we 
directly kill the task processes from the MapReduce job. And for 
Twister component, since the daemon spawns thread to execute 
the MapReduce tasks, killing the tasks will result in failure of the 
Twister daemons.  
Both Hybrid-pipeline and Twister-pipeline are tested with the 
workers killed on 1 node and 10 nodes. For a Twister-pipeline, a 
Twister daemon failure will result in restarting the MapReduce 
job it runs; For the Hybrid-pipeline, if the fault happens within 
Hadoop component, the Hadoop runtime will handle the failure by 
rescheduling the map task and restarting map/reduce tasks. If the 
fault happens within Twister component, a same fault recovery 
strategy will be used as in the Twister-pipeline. 
Finally, as both of the pipelines are managed by HyMR system, 
all the jobs can be automatically recovered once a failure happens.  
The fault tolerance test result is shown in Figure 9. In our 
experiments, the 10 nodes failure and 1 node failure gives the 
same result within Twister-pipeline. This is because either fault 
will make the workflow system to restart the Twister runtime and 
rerun the MapReduce job. So in our result Figure 8, only 1 time 
line is displayed for Twister-pipeline. 
In a fault-free execution with input size of 18432, the Twister-
pipeline takes totally 2691 seconds with 1685 seconds of 
computation in average to finish while Hybrid-pipeline takes 
average 2338 seconds with 1804 seconds of computation to finish. 
At time point 10% and 25%, the Hybrid-pipeline was executing 
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Hadoop-PSA component; at time point 55%, 70% and 85%, 
Hybrid-pipeline was executing Hadoop-MI-MDS component. So 
Hadoop will handle the failure by re-schedule all failed workers to 
available slots. Hybrid pipeline with 80 tasks killed on 10 nodes 
uses slightly more time than 8 tasks killed on 1 node because of 
the scheduling overhead. With Twister-pipeline, since all the 
component are executed by Twister, when fault happens, the 
HyMR will restart the Twister-runtime at an average time of 267 
seconds, then re-run the Twister job. Therefore, Twister-pipeline 
takes longer than Hybrid-pipeline to recover from failure. The 
Hybrid-pipeline also performs more stable than Twister-pipeline 
at different failure time where each core are scheduled with 2 map 
tasks where Twister can only handle 1 map task per core. So 
Twister takes longer time to recover than Hadoop when the time 
point increases within a same component. Take an example at 
time point 55%, 70% and 85%, Twister-MI-MDS fails when the 
MI-MDS has been executed after 81, 334 and 587 seconds, the 
overall Twister-pipeline job execution time increases as well. In 
contrast, even though Hadoop-MI-MDS fails at these 3 different 
times, since the map task only takes half of a Twister map task 
time to finish, the job execution time doesn’t increases much as in 
the Twister-pipeline. The last but not least thing to mention is at 
time point 40%, as both of the pipelines were execution Twister-
MDS, so the fail recover time for them are the similar, where 
Twister-MDS restarts after 173 seconds and HDFS-Twister-MDS 
restarts after 143 seconds. 

5. Related Work 
HyMR uses Hadoop to support MapReduce jobs and Twister to 
support iterative MapReduce jobs. Besides Twister, several other 
iterative MapReduce frameworks were developed over the past 
years. We chose Twister over the other iterative MapReduce 
runtimes because it is a light weighted fully fledged framework. 
Spark [27] is a MapReduce framework using memory cache to 
store the static data during iterative computations. It uses resilient 
distributed dataset (RDD) to provide fault tolerance. An RDD is a 
read-only collection of objects contains additional information 
from other tasks. Once a node fails, RDDs on other nodes can 
recover the failed RDD using resilient information. However, this 
approach uses additional memory on each compute node. It is not 
ideal to solve the memory bound problem such as MDS. 
Additionally, Spark is not a standalone runtime because it is based 
on another cluster manage system called Nexus [28]. Haloop [29] 
is an extension to the existing Hadoop system. Different from 
Twister, it uses local disk instead of memory to cache the static 
data during each iteration. Although it modified Hadoop job 
scheduler to avoid rescheduling overhead from each iteration, its 
map and reduce tasks still need to read and write to local disk in 
every iteration. Therefore, unlike Twister, it does not eliminate 
disk I/O cost. Pregel [30], an iterative graph processing 
framework proposed by Google, excels in processing iterative 
graph applications, such as PageRank, but lacks support for 
general iterative applications.  
According to the taxonomy proposed by Yu et al. [31], current 
workflow systems can be divided into several categories. HyMR 
is a concrete workflow model since the resources has been 
allocated during an execution. Different from HyMR, most classic 
workflow system built on Grid adopts abstract model. Pegasus 
[32] maps complex scientific workflow into various Grid 
resources. It focused on optimizing available resources allocation 
by using certain artificial intelligence techniques. Kepler [33] 
models a workflow as independent components and 
communicates through well-defined interfaces. So adding more 
components into the workflow will not harm the integrity of 

existing ones. It also provides a graphic environment to design 
and reuse the Grid workflows. Taverna [34] allows automation of 
experimental methods through the use of a number of different 
(local or remote) services from a very diverse set of domains – 
biology, chemistry and medicine to music, meteorology and social 
sciences. It uses XML based language to describe the data model 
which includes control flow, data flow, input and processors. All 
above workflow systems can enable distributed computing. 
However, they are mainly focused on Grid resources allocation 
when a job needs to use multiple processors and they do not 
directly support MapReduce. In contrast, HyMR focused on 
executing efficiently on available resources such as cluster and 
cloud by importing Hadoop and Twister.  
There are already several existing MapReduce workflow systems. 
Sawzall [35] is a script language where its data processing built 
on top of Google MapReduce. Sawzall consists by an interpreter 
runs in the map phase to instantiate partitions over multiple nodes, 
a program which execute once for each partition and an 
aggregator accumulates the results from the program to a final 
output. It provides an efficient way to schedule data on multiple 
machines. Pig Latin [36] is similar to Sawzall, but based on 
Hadoop. It has extended features such as cogrouping, which can 
be used for join operation. As it is constructed to mimic the 
behavior of a relational database, it is more suitable for processing 
relational intermediate data inside the dataflow. Oozie [37] is a 
workflow system to manage data processing job for Hadoop. It 
supports MapReduce job, Hadoop Streaming, Pig and HDFS. Its 
design is similar to classical Grid workflow system but mainly 
process MapReduce job and store the data into HDFS. MRGIS 
[38] is also a scripting-based parallel programming tool, similar to 
the above systems. However, it is only specialized for GIS 
applications on MapReduce computing infrastructure. CloudWF 
[39] is a computational workflow system specially based on cloud 
infrastructure where Hadoop is installed. It aims to simplify the 
complication of running a general purpose distributed pipeline on 
MapReduce and take full potential advantages from the 
infrastructure underlying Cloud. Compare to these workflow 
systems, the design of HyMR is similar to Oozie, MRGIS and 
CloudWF. Decentralization of space and time is achieved by 
HyMR execution. The resources from cluster are also fully 
utilized by importing Twister and Hadoop. Additionally, none of 
the existing workflow system can directly support parallel 
iterative applications using MapReduce paradigm. HyMR can 
support a pipeline which includes iterative parallel applications 
more efficiently. Our previous work introduced Tigr-Twister-
workflow [40] which merges Twister with Tigr-workflow [41] to 
support both iterative and non-iterative bioinformatics 
applications running on cluster with a web interface. But this 
system is less efficient since it lacks several features such as fault 
tolerance and distributed file system support.  

6. Conclusion and Future Work 
In this paper we proposed and implemented a new distributed 
workflow system HyMR which is based on composition of 
different MapReduce systems: Hadoop and Twister. The pros and 
cons of using these two runtimes are analyzed. The architecture of 
HyMR is described in detail. We explained how HyMR is 
extended to support both MapReduce and iterative MapReduce 
applications. A bioinformatics visualization pipeline is proposed 
to test HyMR. Several applications including an iterative 
application are included in this pipeline. A Twister-pipeline and 
Hybrid-pipeline is implemented and used to test the efficiency and 
fault tolerance of HyMR. In our experiments, we demonstrated 



that the Hybrid-pipeline is more efficient than Twister-pipeline, 
which explains the motivation for our HyMR.  

In the future, we would like to extend our system on more 
dynamic computing resources, such as cloud. A web server could 
be established on top layer so the user can submit distributed jobs 
using HyMR. . 
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