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Abstract. We explore the idea of integrating machine learning with
simulations to enhance the performance of the simulation and improve
its usability for research and education. The idea is illustrated using hy-
brid openMP/MPI parallelized molecular dynamics simulations designed
to extract the distribution of ions in nanoconfinement. We find that an
artificial neural network based regression model successfully learns the
desired features associated with the output ionic density profiles and
rapidly generates predictions that are in excellent agreement with the
results from explicit molecular dynamics simulations. The results demon-
strate that the performance gains of parallel computing can be further
enhanced by using machine learning.
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1 Introduction

In the fields of physics, chemistry, bioengineering, and materials science, it is
hard to overstate the importance of parallel computing techniques in provid-
ing the needed performance enhancement to carry out long-time simulations of
systems of many particles with complex interaction energies. These enhanced
simulations have enabled the understanding of microscopic mechanisms under-
lying the macroscopic material and biological phenomena. For example, in a
typical molecular dynamics (MD) simulation of ions in nanoconfinement [2, 13]
(Fig. 1), ≈ 1 nanosecond of dynamics of ≈ 500 ions on one processor takes ≈ 12
hours of runtime, which is prohibitively large to extract converged results for
ion distributions within reasonable time frame. Performing the same simulation
on a single node with multiple cores using OpenMP shared memory reduces the
runtime by a factor of 10 (≈ 1 hour), enabling simulations of the same system for
longer physical times. Using MPI dramatically enhances the simulation perfor-
mance: for systems with thousands of ions, speedup of over 100 can be achieved,
enabling the generation of the needed data for evaluating converged ionic dis-
tributions. Further, a hybrid OpenMP/MPI approach can provide even higher
speedup of over 400 for similar-size systems enabling state-of-the-art research
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Fig. 1. Sketch of ions represented by blue and red spheres confined by material surfaces.

with simulations that can explore the dynamics of ions with less controlled ap-
proximations, accurate potentials, and for tens or hundreds of nanoseconds over
a wider range of physical parameters.

Despite the employment of the optimal parallelization model suited for the
size and complexity of the system, scientific simulations remain time consuming.
This is particularly evident in the area of using simulations in education where
real-time simulation-driven responses to students in classroom settings are desir-
able. While in research settings, instantaneous results are generally not expected
and simulations can take up to several days, it is often desirable to rapidly ac-
cess expected trends associated with relevant physical quantities that could have
been learned from past simulations or could be predicted with reasonable accu-
racy based on the history of data generated from earlier simulation runs. As
an example, consider a simulation framework, Ions in Nanoconfinement, that
we deployed as a web application on nanoHUB to execute the aforementioned
simulations of ionic systems [14]. In classroom usage, we have observed that the
fastest simulations can take about 10 minutes to provide the converged ionic
densities while the slowest ones (typically associated with larger system sizes
and more complex ion-ion interaction energies) can take over 3 hours. Similarly,
for research applications, not having a rapid access to expected overall trends
in the key simulation output quantities (e.g., the variation of contact density as
a function of ion concentration) can make the process of starting new investi-
gations unwieldy and time-consuming. Primary factors that contribute to this
scenario are the time delays resulting from the combination of waiting time in a
queue on a computing cluster and the actual runtime for the simulation.

In this paper, we explore the idea of integrating machine learning (ML) layer
with simulations to enhance the performance and improve the usability of sim-
ulations for both research and education. This idea is inspired by the recent
development and use of ML in material simulations and scientific software ap-
plications [4, 17, 6, 23]. We employ a particular example, hybrid OpenMP/MPI
parallelized MD simulations of ions in nanoconfinement [13, 14] to illustrate this
idea. We demonstrate that an artificial neural network (ANN) based regres-
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sion model, trained on data generated via these simulations, successfully learns
pre-identified key features associated with the output ionic density profile (the
contact, mid-point, and peak densities). The ML approach entirely bypasses
simulations and generates predictions that are in excellent agreement with re-
sults obtained from explicit MD simulations. The results demonstrate that the
performance gains of parallel computing can be enhanced using data-driven ap-
proaches such as ML which improves the usability of the simulation framework
by enabling real-time engagement and anytime access.

2 Background and Related Work

2.1 Coarse-grained simulations of ions in nanocon�nement

The distribution of ions often determines the assembly behavior of charged
or neutral nanomaterials such as nanoparticles, colloids, or biological macro-
molecules. Accurate knowledge of this ionic structure is exploited in many ap-
plications [8] including the design of double-layer supercapacitor and the extrac-
tion of metal ions from wastewater. As a result, extracting the distribution of
ions in nanoconfinement created by material surfaces has been the focus of re-
cent experiments and computational studies [18, 22, 24, 21, 13]. From a modeling
standpoint, the surfaces are often treated as planar interfaces considering the
size difference between the ions and the confining material particles, and the
solvent is coarse-grained to speed-up the simulations. Such coarse-grained simu-
lations have been employed to extract the ionic distributions over a wide range of
electrolyte concentrations, ion valencies, and interfacial separations using codes
developed in individual research groups [2, 3, 13] or using general purpose soft-
ware packages such as ESPRESSO [16] and LAMMPS [19].

Generally, the average equilibrium ionic distribution, resulting from the com-
peting inter-ionic steric and electrostatic interactions as well as the interactions
between the ions and surfaces, is a quantity of interest. However, in many cases,
the density of ions at the point of closest approach of the ion to the interface
(contact density), the peak density, or the density at the center of the slit (mid-
point density) directly relate to important experimentally-measurable quantities
such as the effective force between the confining surfaces or the osmotic pres-
sure [24, 21]. It is thus useful to compute the variation of the contact, peak, and
mid-point densities as a function of the solution conditions or ionic attributes.

2.2 Machine learning for enhancing simulation performance

Recent years have seen a surge in the use of ML to accelerate computational
techniques aimed at understanding material phenomena. ML has been used to
predict parameters, generate configurations in material simulations, and classify
material properties [4, 9, 17, 23]. For example, Fu et al. [17] employed ANN to
select efficient updates to accelerate Monte Carlo simulations of classical Ising
spin models near critical parameters associated with the phase transition. Simi-
larly, Botu et al. [4] employed kernel ridge regression to accelerate MD method
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for nuclei-electron systems by learning the selection of probable configurations in
MD simulations, which enabled bypassing explicit simulations for several steps.

The integration of ML layer for performance enhancement of scientific sim-
ulation frameworks deployed as web applications is relatively far less explored.
nanoHUB is the largest online resource for education and research in nanotech-
nology [15]. This cyberinfrastructure hosts over 500 simulation tools and serves
1.4 million users worldwide. Our survey indicated that only one simulation tool
on nanoHUB [10] employs ML-based methods to enhance the performance and
usability of the simulation software. This simulation tool employs a deep neural
network to bypass computational limitations in extracting transfer times asso-
ciated with the excitation energy transport in light-harvesting systems [10].

3 Framework for Simulating Ions in Nanoconfinement

We developed a framework for simulating ions in nanoscale confinement (referred
here as the nanoconfinement framework) that enabled a systematic investigation
of the self-assembly of ions characterized by different ionic attributes (e.g., ion
valency) and solution conditions (e.g., ion concentration and inter-surface sepa-
ration) [11, 13, 14]. The framework has been employed to extract the ionic struc-
ture in electrolyte solutions confined by planar and spherical surfaces. Results
have elucidated the microscopic mechanisms involving the ionic correlations and
steric effects that determine the distribution of ions [11–13].

In the work presented here, we focus on ions confined by unpolarizable sur-
faces where the simulations are relatively faster [13], thus easing the training
and testing of the ML model. We identify the following system attributes as key
parameters that determine the self-assembly of ions: inter-surface separation or
confinement length h, ion valencies (zp, zn associated with the positive and neg-
ative ions), electrolyte concentration c, and ion diameter d. We ignore the effects
arising due to the solvent-induced asymmetry in ionic sizes, and assign the pos-
itive and negative ions with the same diameter. Additional details regarding the
model and simulation method can be found in the original paper [13].

The nanoconfinement framework employs a customized code, written in C++
programming language, for simulating ions near unpolarizable interfaces. The
code, freely available as an open-source repository on GitHub [14], is accelerated
using a hybrid parallel programming technique (see Sec. 3.1). This framework
is also deployed as a web application (Ions in Nanoconfinement) on nanoHUB
[14] (see Sec. 3.2). We have verified that the ionic density profiles obtained using
our in-house developed code agree with the densities extracted via simulations
performed in LAMMPS. We note that the ML model explored in the following
sections to predict the desired key ionic densities is agnostic to the particular
code engine that enables the MD simulations for generating the training dataset.

3.1 Hybrid OpenMP/MPI parallelization

The nanoconfinement framework is based on a code that employs the velocity-
Verlet algorithm to update the positions and velocities at each simulation step.
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Fig. 2. Hybrid model implemented in the Force Calculation block using MPI and
OpenMP to accelerate the nanoconfinement framework.

First, the velocities of all ions is updated for half timestep �=2, following which
the positions of all ions are updated for �. At this point, the forces on all ions
are computed, and finally the velocities for all ions are updated for the next
�=2. Once the system reaches equilibrium, the positions of the ions are stored
periodically to extract density profiles.

To improve the runtime of the simulation, the framework employs the hy-
brid masteronly model that uses one MPI process per node and OpenMP on
the cores of the node, with no MPI calls inside the parallel regions. This hybrid
model is applied for the force and energy calculation subroutines, and it enables
the domain decomposition under a two-level mechanism. On the MPI level, a
coarse-grained domain decomposition is performed using boundary conditions
as explained in Fig. 2. The second level of domain decomposition is achieved
through OpenMP loop level parallelization inside each MPI process. This mul-
tilevel domain decomposition has advantages over pure MPI or pure OpenMP,
when cache performance is taken into consideration. This strategy also provides
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Fig. 3. A screenshot of the GUI (top left) and usage statistics of the nanoconfinement
framework deployed on nanoHUB.

the maximum access locality, a minimum of cache misses, non-uniform memory
access (NUMA) traffic and inter-node communication [20].

3.2 Deployment on nanoHUB cloud

The nanoconfinement framework is deployed as a web application (Ions in Nanocon-
finement) [14] on the nanoHUB cloud cyberinfrastructure. nanoHUB provides
a user-friendly, web-based access for executing simulation codes to researchers,
students, and educators broadly interested in nanoscale engineering [15]. In less
than 1 year of its launch, the Ions in Nanoconfinement application has nucle-
ated 58 users worldwide and has been run over 1200 times [14]. This application
is designed to launch simulations that use virtual machines or supercomputing
clusters depending on user-selected inputs, and it has been employed to teach
graduate courses at Indiana University. Advances in the framework that enable
real-time results can significantly enhance the user-experience of the commu-
nity that employs this application in both education and research. The current
version of “Ions in Nanoconfinement”, like almost all other applications on the
nanoHUB platform, does not support this feature.

4 ML-enabled Performance Enhancement

We now describe an approach based on ML to enhance the overall performance
and usability of the nanoconfinement framework. Figure 4 shows the overview
of the implemented methodology. First, the attributes of the ions and solu-
tion conditions that characterize the system are fed to the nanoconfinement


