
Peer-to-Peer Grids

Geoffrey Fox1,2,4, Dennis Gannon2, Sung-Hoon Ko1, Sangmi Lee5, Shrideep Pallickara1, Marlon Pierce1, Xiaohong Qiu1,3, Xi
Rao1,2, Ahmet Uyar1,3, Minjun Wang1,3, Wenjun Wu1

1Community Grid Computing Laboratory, Indiana University
501 N Morton Suite 224, Bloomington IN 47404

2Computer Science Department, Indiana University
3EECS Department, Syracuse University

4School of Informatics and Physics Department, Indiana University
5Computer Science Department Florida State University

gcf@indiana.edu, , , gannon@cs.indiana.edu shko@grids.ucs.indiana.edu
slee@grids.ucs.indiana.edu, , , , spallick@indiana.edu marpierc@indiana.edu xiqiu@syr.edu

xirao@indiana.edu, , , auyar@syr.edu mwang03@syr.edu wewu@indiana.edu

Keywords: Web Service, Event Service, JXTA, JMS, Java Message Service, Collaboration, Universal Access, Peer-to-Peer

Abstract
We describe Peer-to-Peer Grids built around Integration of technologies from the peer-to-peer and Grid fields. We focus on
the role of Web services linked by a powerful event service using uniform XML interfaces and application level routing. We
describe how a rich synchronous and asynchronous collaboration environment can support virtual communities built on top
of such infrastructure. Universal access mechanisms are discussed.

1 Peer-to-Peer Grids
There are no crisp definitions of Grids [1,2] and Peer-to-Peer Networks [3] that allow us to unambiguously discuss

their differences and similarities and what it means to integrate them. However these two concepts conjure up stereotype
images that can be compared. Taking “extreme” cases, Grids are exemplified by the infrastructure used to allow seamless
access to supercomputers and their datasets. P2P technology is exemplified by Napster and Gnutella, which can enable ad
hoc communities of low-end clients to advertise and access the files on the communal computers. Each of these examples
offers services but they differ in their functionality and style of implementation. The P2P example could involve services to
set-up and join peer groups, browse and access files on a peer, or possibly to advertise one’s interest in a particular file. The
“classic” grid could support job submittal and status services and access to sophisticated data management systems. Grids
typically have structured robust security services while P2P networks can exhibit more intuitive trust mechanisms
reminiscent of the “real world”. Again Grids typically offer robust services that scale well in pre-existing hierarchically
arranged organizations; P2P networks are often used when a best effort service is needed in a dynamic poorly structured
community. If one needs a particular “hot digital recording”, it is not necessary to locate all sources of this; a P2P network
needs to search enough plausible resources that success is statistically guaranteed. On the other hand, a 3D simulation of the
universe might need to be carefully scheduled and submitted in a guaranteed fashion to one of the handful of available
supercomputers that can support it.

In this article, we explore the concept of a Peer-to-Peer Grid with a set of services that include those of Grids and
P2P networks and support naturally environments that have features of both limiting cases. We can discuss two examples
where such a model is naturally applied. In High Energy Physics data analysis (e-Science [4]) problem discussed in chapter
of Bunn and Newman, the initial steps are dominated by the systematic analysis of the accelerator data to produce summary
events roughly at the level of sets of particles. This Grid-like step is followed by “physics analysis” which can involve many
different studies and much debate between involved physicists as to appropriate methods to study the data. Here we see some
Grid and some P2P features. As a second example, consider the way one uses the Internet to access information – either news
items or multimedia entertainment. Perhaps the large sites like Yahoo, CNN and future digital movie distribution centers
have Grid like organization. There are well-defined central repositories and high performance delivery mechanisms involving
caching to support access. Security is likely to be strict for premium channels. This structured information is augmented by
the P2P mechanisms popularized by Napster with communities sharing MP3 and other treasures in a less organized and
controlled fashion. These simple examples suggest that whether for science or commodity communities, information systems
should support both Grid and Peer-to-Peer capabilities [5,6].

In Sec. 2, we describe the overall architecture of a P2P Grid emphasizing role of Web services and in Sec. 3,
describe the event service appropriate for linking Web Services and other resources together. In the following two sections,
we describe how collaboration and universal access can be incorporated in this architecture. The latter includes the role of
portals in integrating the user interfaces of multiple services. The chapter by Pallickara and Fox includes a detailed
description of a particular event infrastructure.

2 Key Technology Concepts for P2P Grids

Database Database

Broker

Computing

Security
Collaboration

Composition
Content Access

Resources

Clients Users and Devices

Middle Tier of
Web Services
Brokers
Service Providers

The other chapters in this book describe the essential architectural features of Web services and we first contrast
their application in Grid and P2P systems. Fig. 1 shows a traditional Grid with a Web (OGSA) middleware mediating

between clients and back-end resources. Fig. 2 shows the
same capabilities but arranged democratically as in a P2P
environment. There are some “real things” (users, computers,
instruments), which we term external resources – these are the
outer band around the “middleware egg”. As shown in fig. 3,
these are linked by a collection of Web Services [7]. All
entities (external resources) are linked by messages whose
communication forms a distributed system integrating the
component parts.

Peer to Peer Grid

Database
Database

P2P

P2P

Web Service Interfaces

Web Service Interfaces

Event/
Message
Brokers

Integrate P2P
and Grid/WS

Event/
Message
Brokers

Fig. 2: A Peer-to-Peer Grid
Fig. 1: A Grid with clients accessing back-end
resources through middle-ware services

Distributed Object technology is implemented with
objects defined in a XML-based IDL (Interface Definition
Language) called WSDL (Web Services Definition
Language). This allows “traditional approaches” like CORBA
or Java to be used “under-the-hood” with an XML wrapper
providing a uniform interface. Another key concept – that of
the resource – comes from the web consortium W3C.
Everything – whether an external or internal entity – is a
resource labeled by a URI (Universal Resource Identifier); a

typical form being escience://myplace/mything/mypropertygroup/leaf. This includes not only macroscopic constructs like
computer programs or sensors but also their detailed properties. One can consider the URI as the barcode of the Internet – it
labels everything. There are also of course URL’s (Universal Resource Locations) which tell you where things are. One can
equate these concepts (URI and URL) but this is in principle inadvisable although of course common practice.

(Virtual) XML Knowledge (User) Interface

Clients

(Virtual) XML Data Interface

Raw DataRaw
Resources

Raw Data

WSWS

Web Service (WS)

WS

WSWS WS WSWS

Render to XML Display Format

(Virtual) XML
Rendering Interface

etc.XML WS to WS Interfaces

Fig. 3: Role of Web Services (WS) and XML in linkage
of clients and raw resources

Finally the environments of figs. 1 to 3 are built in a service model. A service is an entity that accepts one or more
inputs and gives one or more results. These inputs and results are the messages that characterize the system. In WSDL, the
inputs and outputs are termed ports and WSDL defines an overall structure for the messages. The resultant environment is
built in terms of the composition of services.

In summary everything is a resource. The basic macroscopic entities exposed directly to users and to other services
are built as distributed objects that are constructed as services so that capabilities and properties are accessed by a message-
based protocol. Services contain multiple properties, which are themselves individual resources. A service corresponds
roughly to a computer program or process; the ports (interface of a communication channel with a Web Service) to
subroutine calls with input parameters and returned data. The critical difference from the past is that one assumes that each
service runs on a different computer scattered around the globe. Typically services can be dynamically migrated between
computers. Distributed object technology allows us to properly encapsulate the services and provide a management structure.
The use of XML and standard interfaces like WSDL give a universality that allows the interoperability of services from

different sources. This picture is consistent with that described throughout this book with perhaps this chapter emphasizing
more the basic concept of resources communicating with messages.

There are several important technology research and development areas on which the above infrastructure builds
1) Basic system capabilities packaged as Web Services. These include security, access to computers (job submittal, status

etc.) and access to various forms of databases (information services) including relational systems, LDAP, and XML
databases/files. Network wide search techniques about web services or the content of web services could be included
here. In sec. 1, we described how P2P and Grid systems exhibited these services but with different trade-offs in
performance, robustness and tolerance of local dynamic characteristics.

2) The messaging sub-system between Web Services and external resources addressing functionality, performance and
fault-tolerance.

Both P2P and Grids need messaging although if you compare JXTA [8] as a typical P2P environment with a Web Service
based Grid you will see important differences described in sec. 3. Items 3) to 7) below are critical e-Science [4] capabilities
which can be used more or less independently
3) Tool-kits to enable applications to be packaged as Web Services and construction of “libraries’ or more precisely

components. Near-term targets include areas like image processing used in virtual observatory projects or gene searching
used in bio-informatics.

4) Application meta-data needed to describe all stages of the scientific endeavor.
5) Higher-level and value-added system services such as network monitoring, collaboration and visualization. Collaboration

is described in sec. 4 and can use a common mechanism for both P2P and Grids.
6) What has been called the Semantic Grid [9] or approaches to the representation of and discovery of knowledge from

Grid resources. This is discussed in detail in the chapter by de Roure and collaborators.
7) Portal technology defining user facing ports on web services which accept user control and deliver user interfaces.

Fig. 3 is drawn as a classic 3-tier architecture: client (at the bottom), back-end resource (at the top) and multiple
layers of middleware (constructed as web services). This is the natural virtual machine seen by a given user accessing a
resource. However the implementation could be very different. Access to services can be mediated by “servers in the core” or
alternatively by direct peer-to-peer (P2P) interactions between machines “on the edge”. The distributed object abstractions
with separate service and message layers allow either P2P or server-based implementations. The relative performance of each

approach (which could reflect computer/network horsepower as well as existence of firewalls) would be used in deciding on
the implementation to use. P2P approaches best support local dynamic interactions; the server approach scales best globally
but cannot easily manage the rich structure of transient services, which would characterize complex tasks. We refer to our
architecture as a peer-to-peer grid with peer groups managed locally arranged into a global system supported by core servers.
Fig. 4 redraws fig. 2 with Grids controlling central services while “services at the edge” are grouped into less organized
“middleware peer groups”. Often one associates P2P technologies with clients but in a unified model, they provide services,
which are (by definition) part of the middleware. As an example, one can use the JXTA search technology [8] to federate
middle tier database systems; this dynamic federation can use either P2P or more robust Grid security mechanisms. One ends
up with a model shown in fig. 5 for managing and organizing services. There is a mix of structured (Grid-like) and
unstructured dynamic (P2P like) services.

Database
Database

Grid Middleware

Grid Middleware

Grid
Middleware

Grid
Middleware

MP Group

MP Group

M
P

G
r
o
u
p

M
P

G
r
o
u
p

Unstructured P2P Management Spaces

GridWS

GridWSGridWS

GridWS

GridWS GridWS GridWS GridWS

P2PWS

P2PWS

P2PWS

P2PWS

P2PWS

DWS/P

P2PWS

P2PWS

DWS/P

P2PWS P2PWS

Structured
Management Spaces

Peer Group 1
Peer Group 2

Fig. 5: A hierarchy of Grid (Web) Services with
dynamic P2P groups at the leaves

Fig. 4: Middleware Peer (MP) Groups of Services at
the “edge” of the Grid

We can ask if this new approach to distributed system infrastructure affects key hardware, software infrastructure
and their performance requirements. First we present some general remarks. Servers tend to be highly reliable these days.
Typically they run in controlled environments but also their software can be proactively configured to ensure reliable
operation. One can expect servers to run for months on end and often one can ensure that they are modern hardware
configured for the job at hand. Clients on the other hand can be quite erratic with unexpected crashes and network
disconnections as well as sporadic connection typical of portable devices. Transient material can be stored on clients but
permanent information repositories must be on servers – here we talk about “logical” servers as we may implement a session
entirely within a local peer group of “clients”. Robustness of servers needs to be addressed in a dynamic fashion and on a
scale greater than in previous systems. However traditional techniques – replication and careful transaction processing –
probably can be extended to handle servers and the web services that they host. Clients realistically must be assumed to be
both unreliable and sort of outside our control. Some clients will be “antiques” and underpowered and are likely to have
many software hardware and network instabilities. In the simplest model clients “just” act as a vehicle to render information
for the user with all the action on “reliable” servers. Here applications like Microsoft Word “should be” packaged as Web
services with message based input and output. Of course if you have a wonderful robust PC you can run both server(s) and
thin client on this system.

3 Peer-to-Peer Grid Event Service
 Here we consider the communication subsystem, which provides the messaging between the resources and Web

services. Its characteristics are of a Jekyll and Hyde nature. Examining the growing power of optical networks we see the
increasing universal bandwidth that in fact motivates the thin client and server based application model. However the real
world also shows slow networks (such as dial-ups), links leading to a high fraction of dropped packets and firewalls stopping
our elegant application channels dead in their tracks. We also see some chaos today in the telecom industry which is stunting
somewhat the rapid deployment of modern “wired’ (optical) and wireless networks. We suggest that key to future e-Science
infrastructure will be messaging subsystems that manage the communication between external resources, web services and
clients to achieve the highest possible system performance and reliability. We suggest this problem is sufficiently hard that
we only need solve this problem “once” i.e. that all communication – whether TCP/IP, UDP, RTP, RMI, XML or you-name-
it be handled by a single messaging or event subsystem. Note this implies we would tend to separate control and high volume
data transfer reserving specialized protocols for the latter and more flexible robust approaches for setting up the control
channels.

Fig. 7: Simplest View of System Components
showing routers of event service supporting queues

Fig. 6: One View of System Components with event
service represented by central mesh

As shown in fig. 6, we see the event service as linking all parts of the system together and this can be simplified
further as in fig. 7 – the event service is to provide the communication infrastructure needed to link resources together.
Messaging is addressed in different ways by three recent developments. There is SOAP messaging [10] discussed in many
chapters; the JXTA peer-to-peer protocols [8]; the commercial JMS message service [11]. All these approaches define
messaging principles but not always at the same level of the OSI stack; further they have features that sometimes can be
compared but often they make implicit architecture and implementation assumptions that hamper interoperability and
functionality. SOAP “just” defines the structure of the message content in terms of an XML syntax and can be clearly used in
both Grid and P2P networks. JXTA and other P2P systems, mix transport and application layers as the message routing,
advertising and discovery are intertwined. A simple example of this is publish subscribe systems like JMS where in general
messages are not sent directly but queued on a broker which uses somewhat ad-hoc mechanisms to match publishers and
subscriber. We will see an important example of this in section 4 when we discuss collaboration; here messages are not
unicast between two designated clients but rather shared between multiple clients. In general, a given client does not know
the locations of those other collaborators but rather establishes a criterion for collaborative session. Thus as in fig. 8, it is

natural to employ routers or brokers whose function is to distribute messages between the raw resources, clients and servers
of the system. In JXTA, these routers are termed rendezvous peers.

We consider that the servers provide services (perhaps defined in the WSDL [7] and related XML standards [10])
and do NOT distinguish at this level between what is provided (a service) and what is providing it (a server). Note that we do
not distinguish between events and messages; an event is defined by some XML Schema including a time-stamp but the latter
can of course be absent to allow a simple message to be thought of as an event. Note an event is itself a resource and might
be archived in a database raw resource. Routers and brokers actually provide a service – the management of (queued events)
and so these can themselves be considered as the servers corresponding to the event or message service. This will be
discussed a little later as shown in fig. 9. Here we note that we design our event systems to support some variant of the
publish-subscribe mechanism. Messages are queued from “publishers” and then clients subscribe to them. XML tag values
are used to define the “topics” or “properties” that label the queues.

Note that in fig. 3, we call the XML Interfaces
“virtual”. This signifies that the interface is logically defined
by an XML Schema but could in fact be implemented
differently. As a trivial example, one might use a different
syntax with say <sender>meoryou</sender> replaced by
sender:meoryou which is an easier to parse but less powerful
notation. Such simpler syntax seems a good idea for “flat”
Schemas that can be mapped into it. Less trivially, we could
define a linear algebra web service in WSDL but compile it
into method calls to a Scalapack routine for high performance
implementation. This compilation step would replace the
XML SOAP based messaging [10] with serialized method
arguments of the default remote invocation of this service by
the natural in memory stack based use of pointers to binary
representations of the arguments. Note that we like publish-
subscribe messaging mechanisms but this is sometimes
unnecessary and indeed occurs unacceptable overhead. We
term the message queues in figs. 7 and 9 virtual to indicate

that the implicit publish-subscribe mechanism can be bypassed if this agreed in initial negotiation of communication channel.
The use of virtual queues and virtual XML specifications could suggest the interest in new run-time compilation techniques,
which could replace these universal but at times unnecessarily slow technologies by optimized implementations.

Data
base

Resource

Broker

Broker

Broker

Broker

Broker

Broker

Software multicast

(P2P) Community

(P2P) Community

(P2P) Community

(P2P) Community

Fig. 8: Distributed Brokers Implementing Event Service

We gather together all services that operate on messages in ways that are largely independent of the process (Web
service) that produced the message. These are services that depend on “message header” (such as destination), message
format (such as multimedia codec) or message process (as described later for the publish-subscribe or workflow mechanism).

Security could also be included here. One could build such
capabilities into each Web service but this is like “inlining”
(more efficient but a job for the run-time compiler we
mentioned above). Fig. 9 shows the event or message
architecture, which supports communication channels between
Web services which can either be direct or pass through some
mechanism allowing various services on the events. These
could be low-level such as routing between a known source
and destination or the higher-level publish-subscribe
mechanism that identifies the destinations for a given pu
event. Some routing mechanisms in peer-to-peer systems in
fact use dynamic strategies that merge these high and low lev
approaches to communication. Note that the messages must
support multiple interfaces: as a “physical” message it should
support SOAP; above this the event service should support
added capabilities such as filtering, publish-subscribe,
collaboration, workflow which corresponds to changing

message content or delivery. Above this there are application and service standards. All of these are defined in XML, whi
can be virtualized. As an example, consider an audio-video conferencing web service [16,17]. It could use a simple
publish/subscribe mechanism to advertise the availability of some video feed. A client interested in receiving the video w
negotiate (using the SIP protocol perhaps) the transmission details. The video could either be sent directly from publisher to

Web
Service 1

(Virtual)
Queue

Web
Service 2

WSDL
Ports

Abstract
Application

Interface

Message
or Event
Broker

WSDL
Ports
Abstract
Application
Interface

Message
System
Interface

Destination
Source

Matching
FilterRouting workflow

User
Profiles And

Customization

Fig 9: Communication Model showing
Sub-services of Event Service

blished

el

ch

ould

subscriber; alternatively from publisher to web service and then from web service to subscriber; as a third option, we could
send from the web service to the client but passing through a filter that converted one codec into another if required. In the
last case, the location of the filter would be negotiated based on computer/network performance issues – it might also involve
proprietary software only available at special locations. The choice and details of these three different video transport and
filtering strategies would be chosen at the initial negotiation and one would at this stage “compile” a generic interface to its
chosen form. One could of course allow dynamic “run-time compilation” when the event processing strategy needs to cha
during a particular stream. This scenario is not meant to be innovative but rather to illustrate the purpose of our architect
building blocks in a homely example. Web services are particularly attractive due to their support of interoperabili
allows the choices described.

nge
ure

ty, which

We have designed and implemented a system NaradaBrokering supporting the model described here with a dynamic
collection of brokers supporting a generalized publish-subscribe mechanism. As described elsewhere [5,6,12,13,14] this can
operate either in a client-server mode like JMS or in a completely distributed JXTA-like peer-to-peer mode. By combining
these two disparate models, NaradaBrokering can allow optimized performance-functionality trade-offs for different
scenarios. Note that typical overheads for broker processing are around one millisecond. This is acceptable for real-time
collaboration [6,15,17] and even audio-video conferencing where each frame takes around 30 milliseconds. We have
demonstrated that such a general messaging system can be applied to real-time synchronous collaboration using the
commercial Anabas infrastructure [15,18].

4 Collaboration in P2P Grids
Both Grids and P2P networks are associated with collaborative environments. P2P networks started with ad-hoc

communities such as those sharing MP3 files; Grids support virtual enterprises or organizations – these are unstructured and
structured societies respectively. At a high level collaboration involves sharing and in our context this is sharing of Web
Services, objects or resources. These are in principle essentially the same thing although today sharing “legacy applications”
like Microsoft Word is not so usefully considered as sharing Web services. Nevertheless we can expect that Web Service
interfaces to “everything” will be available and will take this point of view below where Word, a Web Page, a computer
visualization or the audio-video (at say 30 frames per second) from some video-conferencing system will all be viewed as
objects or resources with a known Web service interface. Of course, if you want to implement collaborative systems today,
then one must use Microsoft COM as the object model for Word but architecturally at least, this is similar to a Web service
interface.

There are many styles and approaches to collaboration. In asynchronous collaboration, different members of a
community access the same resource; the Web has revolutionized asynchronous collaboration with in its simplest form, one
member posting or updating a web page, and others accessing it. Asynchronous collaboration has no special time constraint
and typically each community member can access the resource in their own fashion; objects are often shared in a coarse grain
fashion with a shared URL pointing to a large amount of information. Asynchronous collaboration is quite fault-tolerant as
each user can manage their access to the resource and accommodate difficulties such as poor network connectivity; further
well-established caching techniques can usually be used to improve access performance as the resource is not expected to
change rapidly. Synchronous collaboration is at a high level no different from the asynchronous case except that the sharing
of information is done in real-time. The “real-time” constraint implies delays of around 10-1000 msec. per participant or
rather “jitter in transit delays” of a “few” msecs. Note these timing can be compared to the second or so it takes a browser to
load a new page; the several seconds it takes a lecturer to gather thoughts at the start of a new topic (new PowerPoint slide);
and the 30 msec. frame size natural in audio/video transmission. These numbers are much longer than the parallel computing
MPI message latency measured in microsecond(s) and even the 0.5-3 msec. typical latency of a middle-tier broker.
Nevertheless synchronous collaboration is much harder than the asynchronous case for several reasons. The current Internet
has no reliable quality of service and so it hard to accommodate problems coming from unreliable networks and clients. If
your workstation crashes during a an asynchronous access, one just needs to reboot and restart one’s viewing at the point of
interruption; unfortunately in the synchronous case, after recovering from an error, one cannot resume where one lost contact
because the rest of the collaborators have moved on. Further synchronizing objects among the community must often be done
at a fine grain size. For asynchronous education, the teacher can share a complete lecture whereas in a synchronous session
we might wish to share a given page in a lecturer with a particular scrolling distance and particular highlighting. In summary
synchronous and asynchronous collaboration both involve object sharing but the former is fault sensitive, has modest real-
time constraints and requires fine grain object state synchronization.

The sharing mechanism can be roughly the same for both synchronous and asynchronous case. One needs to
establish communities (peer groups) by either direct (members join a session) or indirect (members express interest in topics

and are given opportunity to satisfy this interest). The
indirect mechanism is most powerful and is familiar in P2P
systems with JXTA using XML expressed advertisements
to link together those interested in a particular topic. Audio-
video conferencing systems typically have a direct method
with perhaps email used to alert potential attendees of an
upcoming session. Commercial web-conferencing systems
like WebEx and Placeware use this approach. In
asynchronous collaboration, one typically “just” has
notification mechanisms for object availability and update.
Systems like CVS (version control) and WebDAV
(distributed authoring) are particularly sophisticated in this
regard. However such sharing environments do not usually
support the “microscopic” events as say one user edits a
file; rather “major events” (check-in and check-out) are
communicated between participants. Nevertheless it is
worth stressing that asynchronous collaboration can be
supported through the generalized publish-subscribe
mechanism with events (messages, advertisements) being
linked together to define the collaboration. In order to
describe a general approach to collaboration, we need to
assume that every Web service has one or more ports in
each of three classes shown in fig. 10(b). The first class are
(resource-facing) input ports which supply the information
needed to define the state of the Web service; these may be
augmented by user-facing input port(s) that allow control
information to be passed by the user. The final class is user-
facing output ports that supply information needed to

construct the user interface. Asynchronous collaboration can share the data (e.g. URL for a Web page or body of an email
message) needed to define a Web service (display Web page or browse e-mail in examples).

Object
Or WS

Object’
Or WS’’

Object’’
Or WS”

Object
Or WS
Display

Object
Or WS
Viewer

User Facing
Input (Control)
and Output Ports

Resource Facing
Ports defining
Web Service

(a)

(b)

Application or
Content source

WSDL

Web Service

F
I

U

O

F
I

R

O

Application or
Content source

WSDL

Web Service

F
I

U

O

F
I

R

O

Portal
Aggregate

WS-User Facing
Fragments

Render

Other WS
User Facing
Ports

Other WS
(c)

Fig 10 (a) Web Service pipeline (flow) from originating
resource(s) (objects) to display
(b) Web services can have resource facing and user facing
ports
(c) Portal as part of display “Web service” aggregating
user facing fragments from multiple Web Services

Let us now consider synchronous collaboration. If one examines an object, then there is typically some pipeline as
seen in fig. 10(a) from the original object to the eventual displayed user interface; as described above, let us assume that each
stage of the pipeline is a Web service with data flowing from one to another. Other chapters have discussed this composition
or flow problem for Web Services and our discussion is not sensitive to details of linkages between Web services. Rather
than a simple pipeline, one can have a complex dynamic graph linking services together. Fig 10(c) shows the role of portals
in this approach and we will return to this in sec. 5. One can get different types of sharing depending on which “view” of the

nd shares the flow of information after this interception.
can identify three particularly important cases illustrat
figures 11, 12 and 13; these are shared display, shared inpu
port and shared user-facing output port. The shared input
port case is usually called “shared event” but in fact in a
modern architecture with all resources communicating by
messages, all collaboration modes can be implemen
a similar event mechanism. The commercial Anabas
environment uses the Java Message Service JMS to handle
all collaboration modes and we have successfully use
NaradaBrokering to replace JMS. In each collaboration
mode we assume there is a single “master” client which
“controls” the Web service; one can in fact have much m
complex scenarios with simultaneous and interchangeable
control. However in all cases, there is instantaneously one
“master” and one must transmit the state as seen by this
system to all other participants.

In shared display model of fig. 11, one shares the bitmap

basic object one shares i.e. on where one intercepts the pipeline a We
ed in

t

ted with

d

ore

 (vector) display and the state is maintained between the
clients by transmitting (with suitable compression) the changes in the display. As with video compression like MPEG, one

Shared Display
WS

Display

WS
Display

Event
(Message)

Service
Other

Participants

Object
Or WS
Display

Object
Or WS
Viewer

Object
Or WS

Object’
Or WS’’

Object’’
Or WS”

Master

Fig. 11: Shared Display Collaboration

uses multiple event types with some defining full display and others just giving updates. Obviously the complete display
requires substantial network bandwidth but it is useful every now and then so that one can support clients joining throughou
session, has more fault tolerance and can define full display update points (major events) where asynchronous clients can
a recording. Supporting heterogeneous clients requires that sophisticated shared display environments automatically change
size and color resolution to suit each community member. Shared display has one key advantage – it can immediately be
applied to all shared objects; it has two obvious disadvantages – it is rather difficult to customize and requires substantial
network bandwidth.

In the shared input port (or input message) model of fig. 12, one replicates the Web service to be shared with one
copy for each client.

t
join

Then sharing is achieved by intercepting the pipeline before the master web service and directing copies

of the m

 a

to

all
d as

om

nt

h the

ts giving
a messag on

i-
d

es

e

to

all
d as

om

nt

h the

ts giving
a messag on

i-
d

es

e

essages on each input port of the “master” Web service to the replicated copies. Only the user-facing ports in this
model are typically partially shared with data from the
master transmitted to each replicated Web service but in
way that can be overridden on each client. We can
illustrate this with a more familiar PowerPoint example.
Here all the clients have a copy of the PowerPoint
application and the presentation to be shared. On the
master client, one uses some sort of COM wrapper
detect PowerPoint change events such as slide and
animation changes. These “change” events are sent to
participating clients. This model isn’t usually phrase
“shared input ports” but that’s just because PowerPoint as
currently shipped is not set up as a Web service with a
messaging interface. One can build a similar shared Web
browser and for some browsers (such as that for SVG fr
Apache) one can in fact directly implement the Web
service model. There is a variant here as one can either
trap internal events (such as slide changes in PowerPoi
or textareas changes in a browser) or the external mouse
and keyboard events that generated them. We once
nt model to trap user input to a browser. These events were
ared input port model with the user interface playing

role of input ports. We can hope that developments [19] such as WSRP and WSIA (Web services for Remote Portals and
Interactive Applications) will define user-facing message ports and the interactions of Web services with input devices so

that a coherent systematic approach can be given for
replicated Web services with shared input ports.

The shared output port model of fig 13 only
involves a single Web service with user-facing por

familiar PowerPoint example.
Here all the clients have a copy of the PowerPoint
application and the presentation to be shared. On the
master client, one uses some sort of COM wrapper
detect PowerPoint change events such as slide and
animation changes. These “change” events are sent to
participating clients. This model isn’t usually phrase
“shared input ports” but that’s just because PowerPoint as
currently shipped is not set up as a Web service with a
messaging interface. One can build a similar shared Web
browser and for some browsers (such as that for SVG fr
Apache) one can in fact directly implement the Web
service model. There is a variant here as one can either
trap internal events (such as slide changes in PowerPoi
or textareas changes in a browser) or the external mouse
and keyboard events that generated them. We once
nt model to trap user input to a browser. These events were
ared input port model with the user interface playing

role of input ports. We can hope that developments [19] such as WSRP and WSIA (Web services for Remote Portals and
Interactive Applications) will define user-facing message ports and the interactions of Web services with input devices so

that a coherent systematic approach can be given for
replicated Web services with shared input ports.

The shared output port model of fig 13 only
involves a single Web service with user-facing por

Shared Output Port Collaboration

Shared Input Port (Replicated WS) Collaboration

de
tra s
de
tra s

WS
Display

WS
Viewer

WS
Display

WS
ViewerEvent

(Message)
Service

Master

WS
Display

WS
Viewer

Collaboration as a WS
Set up Session

Web
Service

F

I

U

O

F

I

R

O

Other
Participants

Web
Service

F

I

U

O

F

I

R

O

Web
Service

F

I

U

O

F

I

R

O

Fig. 12: Shared Web Services using Input Ports (messages)
veloped a sophisticated shared browser using the JavaScript eve
nsmitted directly to participating clients to implement such a
veloped a sophisticated shared browser using the JavaScript eve
nsmitted directly to participating clients to implement such a

ing interface to the client. As in the next secti
and fig. 10(c), a portal could manage these user-facing
ports. As (by definition) the user-facing ports of a Web
service define the user interface, this mechanism simply
gives a collaborative version of any Web service. One
simple example can be built around any content or mult
media server with multi-cast output stream(s). This metho
naturally gives, like shared display, an identical view for
each user but with the advantage of typically less network
bandwidth since the bitmap display usually is more
voluminous than the data transmitted to the client to define
the display. In the next section, we discuss user interfac
and suggest that the user facing ports should not directly
define the interface but a menu allowing the client to
choose the interface style. In such a case, one can obtain
from the shared user-facing model, collaborative views
rvice model of fig. 12 offers even greater customizability
shared Web service.

ing interface to the client. As in the next secti
and fig. 10(c), a portal could manage these user-facing
ports. As (by definition) the user-facing ports of a Web
service define the user interface, this mechanism simply
gives a collaborative version of any Web service. One
simple example can be built around any content or mult
media server with multi-cast output stream(s). This metho
naturally gives, like shared display, an identical view for
each user but with the advantage of typically less network
bandwidth since the bitmap display usually is more
voluminous than the data transmitted to the client to define
the display. In the next section, we discuss user interfac
and suggest that the user facing ports should not directly
define the interface but a menu allowing the client to
choose the interface style. In such a case, one can obtain
from the shared user-facing model, collaborative views
rvice model of fig. 12 offers even greater customizability
shared Web service.

tha ed for each user. Of course the replicated Web s
as each client has the freedom to accept or reject data defining the
tha ed for each user. Of course the replicated Web s
as each client has the freedom to accept or reject data defining the

WS
Display

WS
Viewer

WS
Display

WS
Viewer

Event
(Message)

Service

Master

WS
Display

WS
Viewer

Web Service Message
Interceptor

Collaboration as a WS
Set up Session

Application or
Content source

WSDL

Web Service

F
I

U

O

F
I

R

O

Other
Participants

Fig. 13: Collaborative Web services using shared user-
facing ports

t are customizt are customiz

Here we have discussed how to make general applications collaborative. Figs. 12 and 13 point out that collaboration
is itself a web service [16,17] with ports allowing sessions to be defined and to interact with the event service. This
collaboration web service can support asynchronous and all modes of synchronous collaboration.

We proposed that Web services interacting with messages unified P2P and Grid architectures. Here we suggest that
sharing either the input or user-facing ports of a Web service allows one to build flexible environments supporting either the
synchronous or asynchronous collaboration needed to support the communities built around this infrastructure.

5 User Interfaces and Universal Access
There are several areas where the discussion of sec. 4 is incomplete and here we clarify some user interface issues

which we discuss in the context of universal accessibility i.e. ensuring that any Web service can be accessed as well as
possible by any user irrespective of their physical capability or their network/client connection. Universal access requires that
the user interface be defined intelligently by an interaction between the user “profile” (specifying user and client capabilities
and preferences) and the semantics of the Web service [20]. Only the service itself can in general specify the most important
parts of its user-facing view and so how the output should be modified for clients of limited capabilities. This implies the
modular pipeline of fig. 10 (a) is deficient in the sense there must be a clear flow not only from the “basic Web service” to
the user but also back again. This can be quite complicated and it is not clear how this is achieved in general as the pipeline
from Web service to the user can include transformations, which are not reversible. We can consider the output of each stage
of the Web service as a “document” – each with its own document object model – preferably different instances of the W3C
DOM were possible. The final user interface could be a pure audio rendering for a blind user or a bitmap transmitted to a
primitive client (perhaps a cell phone) not able to perform full browser functions. Our user facing port must transmit
information in a way that user interactions can be properly passed back from the user with the correct semantic meaning.
Current browsers and transformation tools (such as XSLT) do not appear to address this. At this stage we must assume that

g directly between user interface and the Web servic
general a direct back channel does not appear the usual
solution but rather a mix of transport backwards through
reversible transformations in the pipeline and direct
communication around stages (such as the portal controller)
where necessary. In any cases some virtual back channel
must exist that translates user interaction into an appropria
response by the Web service on the user-facing po
Actually there are really three key user-facing sets of ports
a) The main user-facing specification output ports that in

ge

this problem is solved perhaps with a back channel communicatin e. In

te
rts.

neral do not deliver the information defining the

h
r

b)
t. This in general need not pass through the portal, as this

c)

ache) as part of the “event service” as it
rovides a general service (aggregating user interface components) for all applications (Web services). This packaging may

not

display but rather a menu that defines many possible
views. A selector in fig. 14 combines a user profile
from the client (specified on a special profile port) wit
this menu to produce the “specification of actual use
output” which is used by a portal, which aggregates
many user interface components (from different Web
services) into a single view. The result of the
transformer may just be a handle, which points to a
user facing customized output port.
Customized user-facing output port that delivers the

selected view from step a) from the Web service to the clien

User
Profile

Web Service
OO

Render

Portal
(Aggregator)

Selector

Filter

Control Channel

Customized View

Control Channel

Customized View

Selection
ViewApplication or

Content source

WSDL

F
I

R
F
I

U

Fig 14: Architecture of Event Service and Portal to
support Universal Access

only needs the specification of the interface and not the data defining the interface. For multi-media content, step a)
could involve a choice of codec and step b) the transmission of the chosen codec. The conversion between codecs could
in fact involve a general filter capability of the event service as another Web filter service as illustrated in fig. 7. It seems
appropriate to consider interactions with user profiles and filters as outside the original Web service as they can be
defined as interacting with the message using a general logic valid for many originating Web services.
User-facing input/output port, which is the control channel shown in fig. 14.

Note that in fig.14 we have lumped a portal (such as Jetspeed [21,22] from Ap
p

be most convenient but architecturally portals share features with workflow, filters and collaboration. These are services
that operate on message streams produced by Web services. Considering universal access in this fashion could make it easier
to provide better customizable interfaces and help those for whom the current display is unsuitable. We expect that more

research is needed in areas like the DOM to allow universal interfaces to be generated for general web services. We would
like to thank Al Gilman and Greg Vanderheiden from the Wisconsin Trace Center for discussions in this area.

Acknowledgements
ible through partial support provided by DoD High Performance Computing Modernization

he
This publication made poss
Program (HPCMP) Programming Environment & Training (PET) activities through Mississippi State University under t
terms of Agreement No. # GS04T01BFC0060. The University of Illinois also provided support through the PACI Partners
program funded by NSF. The opinions expressed herein are those of the authors and do not necessarily reflect the views of
the sponsors.

References
1. The Grid Forum http://www.gridforum.org
2. Globus Grid Project http://www.globus.org
3. “Peer-To-Peer: Harnessing the Benefits of a Disruptive Technology”, edited by Andy Oram, O’Reilly Press March 2001.
4. United Kingdom e-Science Activity http://www.escience-grid.org.uk/
5. Hasan Bulut, Geoffrey Fox, Dennis Gannon, Kangseok Kim, Sung-Hoon Ko, Sangmi Lee, Sangyoon Oh, Xi Rao,

Shrideep Pallickara, Quinlin Pei, Marlon Pierce, Aleksander Slominski, Ahmet Uyar, Wenjun Wu, Choonhan Youn “An
Architecture for e-Science and its Implications” presented at 2002 International Symposium on Performance Evaluation
of Computer and Telecommunication Systems (SPECTS 2002) July 17 2002.
http://grids.ucs.indiana.edu/ptliupages/publications/spectsescience.pdf

6. Geoffrey Fox, Ozgur Balsoy, Shrideep Pallickara, Ahmet Uyar, Dennis Gannon, and Aleksander Slominski,
"Community Grids" invited talk at The 2002 International Conference on Computational Science, April 21 -- 24, 2002
Amsterdam, The Netherlands. http://grids.ucs.indiana.edu/ptliupages/publications/iccs.pdf

7. Web Services Description Language(WSDL) version 1.1 http://www.w3.org/TR/wsdl
8. Sun Microsystems JXTA Peer to Peer technology. http://www.jxta.org.
9. W3C Semantic Web http://www.w3.org/2001/sw/
10. XML based messaging and protocol specifications SOAP. http://www.w3.org/2000/xp/.
11. Sun Microsystems. Java Message Service. http://java.sun.com/products/jms.
12. Geoffrey Fox and Shrideep Pallickara “The NaradaBrokering Event Brokering System: Overview and Extensions;

proceedings of the 2002 International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA'02).
http://grids.ucs.indiana.edu/ptliupages/projects/NaradaBrokering/papers/NaradaBrokeringBrokeringSystem.pdf

13. Geoffrey Fox and Shrideep Pallickara “JMS Compliance in the NaradaBrokering Event Brokering System” to appear in
the proceedings of the 2002 International Conference on Internet Computing (IC-
02). http://grids.ucs.indiana.edu/ptliupages/projects/NaradaBrokering/papers/JMSSupportInNaradaBrokering.pdf

14. Geoffrey Fox and Shrideep Pallickara “Support for Peer-to-Peer Interactions in Web Brokering Systems” to appear in
ACM Ubiquity. http://grids.ucs.indiana.edu/ptliupages/projects/NaradaBrokering/papers/P2PSystems.pdf

15. Geoffrey Fox, Sung-Hoon Ko, Marlon Pierce, Ozgur Balsoy, Jake Kim, Sangmi Lee, Kangseok Kim, Sangyoon Oh, Xi
Rao, Mustafa Varank, Hasan Bulut, Gurhan Gunduz, Xiaohong Qiu, Shrideep Pallickara, Ahmet Uyar, Choonhan Youn,
Grid Services for Earthquake Science; Concurrency and Computation: Practice and Experience in ACES Special Issue,
14, 371-393, 2002. http://aspen.ucs.indiana.edu/gemmauisummer2001/resources/gemandit7.doc

16. Geoffrey Fox, Wenjun Wu, Ahmet Uyar, Hasan Bulut "A Web Services Framework for Collaboration and
Audio/Videoconferencing"; proceedings of 2002 International Conference on Internet Computing IC'02: Las Vegas,
USA, June 24-27, 2002. http://grids.ucs.indiana.edu/ptliupages/publications/avwebserviceapril02.pdf

17. Hasan Bulut, Geoffrey Fox, Shrideep Pallickara,Ahmet Uyar and Wenjun Wu, Integration of NaradaBrokering and
Audio/Video Conferencing as a Web Service.
http://grids.ucs.indiana.edu/ptliupages/publications/AVOverNaradaBrokering.pdf

18. Anabas Collaboration Environment, http://www.anabas.com
19. OASIS Web Services for Remote Portals (WSRP) and Web Services for Interactive Applications (WSIA)

http://www.oasis-open.org/committees/
20. Geoffrey Fox, Sung-Hoon Ko, Kangseok Kim, Sangyoon Oh, Sangmi Lee, "Integration of Hand-Held Devices into

Collaborative Environments"; proceedings of the 2002 International Conference on Internet Computing (IC-02). June
24-27 Las Vegas. http://grids.ucs.indiana.edu/ptliupages/publications/pdagarnetv1.pdf.

21. Jetspeed Portal from Apache http://jakarta.apache.org/jetspeed/site/index.html
22. O. Balsoy, M. S. Aktas, G. Aydin, M. N. Aysan, C. Ikibas, A. Kaplan, J. Kim, M. E. Pierce, A. E. Topcu, B. Yildiz, and

G. C. Fox., "The Online Knowledge Center: Building a Component Based Portal." Proceedings of the International
Conference on Information and Knowledge Engineering, 2002.
http://grids.ucs.indiana.edu:9000/slide/ptliu/research/gateway/Papers/OKCPaper.pdf

