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Abstract—We generalize MapReduce, Iterative MapReduce 
and data intensive MPI runtime as a layered Map-Collective 
architecture with Map-AllGather, Map-AllReduce, MapRe-
duceMergeBroadcast and Map-ReduceScatter patterns as the 
initial focus. Map-collectives improve the performance and 
efficiency of the computations while at the same time facilitat-
ing ease of use for the users. These collective primitives can be 
applied to multiple runtimes and we propose building high 
performance robust implementations that cross cluster and 
cloud systems. Here we present results for two collectives 
shared between Hadoop (where we term our extension H-
Collectives) on clusters and the Twister4Azure Iterative 
MapReduce for the Azure Cloud. Our prototype implementa-
tions of Map-AllGather and Map-AllReduce primitives 
achieved up to 33% performance improvement for K-means 
Clustering and up to 50% improvement for Multi-Dimensional 
Scaling, while also improving the user friendliness. In some 
cases, use of Map-collectives virtually eliminated almost all the 
overheads of the computations.  

Keywords: MapReduce, Twister, Collectives, Cloud, HPC, 
Performance, K-means, MDS 

I.  INTRODUCTION

During the last decade three largely industry-driven dis-
ruptive trends have altered the landscape of scalable parallel 
computing, which has long been dominated by HPC applica-
tions. These disruptions are the emergence of data intensive 
computing (aka big data), commodity cluster-based execution 
& storage frameworks such as MapReduce, and the utility 
computing model introduced by Cloud computing. Often-
times MapReduce is used to process the “Big Data” in cloud 
or cluster environments. Although these disruptions have 
advanced remarkably, we argue that we can further benefit 
these technologies by generalizing MapReduce and integrat-
ing it with HPC technologies. This splits MapReduce into a 
Map and a Collective communication phase that generalizes 
the Reduce concept. We present a set of Map-Collective 
communication primitives that improve the efficiency and 
usability of large-scale parallel data intensive computations. 

When performing distributed computations, data often 
needs to be shared and/or consolidated among the different 
nodes of the computations. Collective communication primi-
tives effectively facilitate these data communications by 
providing operations that involve a group of nodes simulta-
neously [1, 2]. Collective communication primitives are very 
popular in the HPC community and used heavily in the MPI 
type of HPC applications. There has been much research [1] 
to optimize the performance of these collective communica-
tion operations, as they have a significant impact on the per-
formance of HPC applications. 

Our work highlights several Map-Collective communica-
tion primitives to support and optimize common computation 
and communication patterns in both MapReduce and iterative 
MapReduce computations. We present the applicability of 
Map-Collective operations to enhance (Iterative) MapReduce 
without sacrificing desirable MapReduce properties such as 
fault tolerance, scalability, familiar APIs and data model. The 
addition of Map-Collectives enriches the MapReduce model 
by providing many performance and ease of use advantages. 
These include providing efficient data communication opera-
tions optimized for particular execution environments & use 
cases, enabling programming models that fit naturally with 
application patterns and allowing users to avoid overhead by 
skipping unnecessary steps of the execution flow.  Map-
Collective operations substitute multiple successive steps of 
an iterative MapReduce computation with a single powerful 
collective communication operation. 

We present these patterns as high level constructs that can 
be adopted by any MapReduce or iterative MapReduce 
runtime. We also offer proof-of-concept implementations of 
the primitives on Hadoop and Twister4Azure and envision a 
future where all the MapReduce and iterative MapReduce 
runtimes support a common set of Map-Collective primitives. 

This paper focuses on mapping the All-to-All communi-
cation type of collective operations, namely AllGather and 
AllReduce, to the MapReduce model as Map-AllGather and 
Map-AllReduce patterns. Map-AllGather gathers the outputs 
from all the Map tasks and distributes the gathered data to all 
the workers after a combine operation. Map-AllReduce prim-
itive combines the results of the Map Tasks based on a reduc-
tion operation and delivers the result to all the workers. We 
also present MapReduceMergeBroadcast as an important 
collective in all (iterative) MapReduce frameworks. 

II. MAPREDUCE-MERGEBROADCAST (MR-MB)
We introduce MapReduce-MergeBroadcast [1] abstrac-

tion, called MR-MB from here onwards, as a generic abstrac-
tion to represent data-intensive iterative MapReduce applica-
tions. Programming models of most of the current iterative 
MapReduce frameworks can be specified as MR-MB.  

A. API
The MR-MB programming model extends the map and

reduce functions of traditional MapReduce to include the 
loop variant data values as an input parameter. MR-MB pro-
vides the loop variant data (dynamicData), including broad-
cast data, to the Map and Reduce tasks as a list of key-value 
pairs using this additional input parameter.  
 Map(<key>, <value>, list_of <key,value> dynamicData) 
 Reduce(<key>,list_of<value>,list_of<key,value> dynamicData) 
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changing the user application makes it possible to optimize 
them as a future work. 

It is not our objective to find the most optimal implemen-
tations for each of the environments, especially for Clouds 
since that might end up being a moving target due to the rap-
idly evolving and black box nature of Cloud environments. 
This presents an opportunity for Cloud providers to offer 
optimized implementations of these primitives as cloud infra-
structure services that can be utilized by the frameworks.  

A. H-Collectives: Map-Collectives for Apache Hadoop 
H-Collectives is the Map-Collectives implementation for 

Apache Hadoop that can be used as a drop-in library with the 
Hadoop distributions. H-Collectives uses the Netty NIO li-
brary, node-level data aggregations and caching to efficiently 
implement the collective communications and computations. 
Existing Hadoop Mapper implementations can be used with 
these primitives with only very minimal changes. These 
primitives work seamlessly with Hadoop dynamic scheduling 
of tasks, support for multiple Map task waves, and other de-
sirable features of Hadoop while supporting the typical Ha-
doop fault tolerance and speculative executions as well. 

A single Hadoop node may run several Map workers and 
many more Map tasks belonging to a single computation. The 
H-Collectives implementation maintains a single node-level 
cache to store and serve the collective results to all the tasks 
executing in a worker node. 

H-Collectives speculatively schedules the tasks for the 
next iteration, and the tasks are waiting to start as soon as all 
the AllGather data is received, getting rid of most of the Ha-
doop job startup/cleanup and task scheduling overheads.  

Task level fault tolerance checkpoints Map task output 
data to HDFS using a background daemon, avoiding over-
head to the computation. In case this checkpointing fails for 
some reason, failed Map tasks or even the whole iteration can 
be re-executed. 

1) H-Collectives Map-AllGather 
This performs TCP-based best effort broadcasts for each 

Map task output. Task output data is transmitted as soon as a 
task is completed, taking advantage of the inhomogeneous 
Map task completion times. Final aggregation of these data 
products is done at the destination nodes only once per node. 
If an AllGather data product is not received through the TCP 
broadcasts, then it will be fetched from the HDFS.  

2) H-Collectives Map-AllReduce 
H-Collectives Map-AllReduce use n'ary tree-based hier-

archical reductions, where Map task level and node level 
reductions would be followed by broadcasting of the locally 
aggregated values to the other worker nodes. The final reduce 
operation is performed in each of the worker nodes and is 
done after all the Map tasks are completed and the data is 
transferred.  

B. Map-Collectives for Twister4Azure iterative MapReduce 
Twister4Azure Map-Collectives are implemented using 

the Windows Communication Foundation (WCF)-based Az-
ure TCP inter-role communication mechanism, while em-
ploying the Azure table storage as a persistent backup. 

Twister4Azure collective implementations maintain a 
worker node-level cache to store and serve the collective re-

sult values to all the tasks executing in that node. Twist-
er4Azure utilizes the collectives to perform synchronization 
at the end of each iteration. It also uses the collective opera-
tions to communicate the new iteration information to the 
workers to aid in the decentralized scheduling of the tasks for 
the next iteration. 

1) Map-AllGather 
Map-AllGather performs simple TCP-based broadcasts 

for each Map task output. Workers start transmitting the data 
as soon as a task is completed. The final aggregation of the 
data is performed in the destination nodes and is done only 
once per node. 

2) Map-AllReduce 
Map-AllReduce uses a hierarchical processing approach 

where the results are first aggregated in the local node and 
then final assembly is performed in the destination nodes. 
The iteration check happens in the destination nodes and can 
be specified as a custom function or as a limit on the number 
of iterations. 

VII. EVALUATION 
In this section we evaluate and compare the performance 

of Map-Collectives with plain MapReduce using two real 
world applications, Multi-Dimensional Scaling and K-means 
clustering. The performance results are presented by breaking 
down the total execution time into the different phases of the 
MapReduce or Map-Collectives computations, providing a 
more finely detailed performance model. This provides a 
better view of various overheads in MapReduce and the op-
timizations provided by Map-Collectives to reduce some of 
those overheads.  

In the following figures, ‘Scheduling’ is the per iteration 
(per MapReduce job) startup and task scheduling time. 
‘Cleanup’ is the per iteration overhead from Reduce task exe-
cution completion to the iteration end. ‘Map overhead’ is the 
start and cleanup overhead for each Map task. ‘Map varia-
tion’ is the overhead due to variation of data load, compute 
and Map overhead times. ‘Comm+Red+Merge’ is the time 
for shuffle, reduce execution, merge and broadcast. ‘Com-
pute’ and ‘Data load’ times are calculated using the average 
compute only and data load times across all the tasks of the 
computation. The common components (data load, compute) 
are plotted at the bottom to highlight variable components. 

Hadoop and H-Collectives experiments were conducted 
in the FutureGrid Alamo cluster, which has Dual Intel Xeon 
X5550 (8 total cores) per node, 12 GB RAM per node and a 
1Gbps network. Twister4Azure tests were performed in Win-
dows Azure cloud, using Azure extra-large instances. Azure 
extra-large instances provide 8 compute cores and 14 GB 
memory per instance. 

A. Multi-Dimensional Scaling (MDS) using Map-AllGather 
The objective of MDS is to map a dataset in high-

dimensional space to a lower dimensional space, with respect 
to the pairwise proximity of the data points [8]. In this paper, 
we use parallel SMACOF [11, 12] MDS, which is an iterative 
majorization algorithm. The input for MDS is an N*N matrix 
of pairwise proximity values. The resultant lower dimension-
al mapping in D dimensions, called the X values, is an N*D 
matrix.  
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VIII. BACKGROUND AND RELATED WORKS 

A. Collective Communication Primitives 
Collective communication operations[6] facilitate opti-

mized communication and coordination between groups of 
nodes of a distributed computation, and are used heavily in 
the MPI type of HPC applications. These powerful operations 
make it much easier and efficient to perform complex data 
communications and coordination inside the distributed par-
allel applications. Collective communication also implicitly 
provides some form of synchronization across the participat-
ing tasks. There exist many different implementations of 
HPC collective communication primitives supporting numer-
ous algorithms and topologies suited to different environ-
ments and use cases. The best implementation for a given 
scenario depends on many factors, including message size, 
number of workers, topology of the system, the computation-
al capabilities/capacity of the nodes, etc. Oftentimes collec-
tive communication implementations follow a poly-algorithm 
approach to automatically select the best algorithm and to-
pology for the given scenario.  

Data redistribution communication primitives can be used 
to distribute and share data across the worker processors. 
Examples of these include broadcast, scatter, gather, and all-
gather operations. Data consolidation communication primi-
tives can be used to collect and consolidate data contributions 
from different workers. Examples of these include reduce, 
reduce-scatter and allreduce. We can further categorize col-
lective communication primitives based on the communica-
tion patterns as well, such as All-to-One (gather, reduce), 
One-to-All (broadcast, scatter), All-to-All (allgather, allre-
duce, reduce-scatter) and Synchronization (barrier). 

The MapReduce model supports the All-to-One opera-
tions through the Reduce step. The broadcast operation of 
MR-MB model (section II) serves as an alternative to the 
One-to-All type operations. The MapReduce model contains 
a barrier between the Map and Reduce phases and the itera-
tive MapReduce has a barrier between the iterations. The 
solutions presented in this paper focus on introducing All-to-
All type collective communication operations to the MapRe-
duce model.  

We can implement All-to-All communications using pairs 
of existing All-to-One and One-to-All type operations present 
in the MR-MB model. For example, the AllGather operation 
can be implemented as Reduce-Merge followed by Broad-
cast. However, these types of implementations would be inef-
ficient and harder to use compared to dedicated optimized 
implementations of All-to-All operations. 

B. MapReduce and Apache Hadoop 
MapReduce, introduced by Google [14], consists of a 

programming model, storage architecture and an associated 
execution framework for distributed processing of very large 
datasets. MapReduce frameworks take care of data partition-
ing, task parallelization, task scheduling, fault tolerance, in-
termediate data communication, and many other aspects of 
these computations for the users. MapReduce provides an 
easy to use programming model, allowing users to utilize the 
distributed infrastructures to easily process large volumes of 
data. 

MapReduce frameworks are typically not optimized for 
the best performance or parallel efficiency of small-scale 
applications. The main goals of MapReduce frameworks in-
clude framework-managed fault tolerance, ability to run on 
commodity hardware, ability to process very large amounts 
of data, and horizontal scalability of compute resources. 

Apache Hadoop[15], together with Hadoop distributed 
parallel file system (HDFS) [16], provides a widely used 
open source implementation of MapReduce. Hadoop sup-
ports data locality-based scheduling and reduces the data 
transfer overhead by overlapping intermediate data commu-
nication with computation. Hadoop performs duplicate exe-
cutions of slower tasks and handles failures by rerunning the 
failed tasks using different workers. MapReduce frameworks 
like Hadoop trade off costs such as large startup overhead, 
task scheduling overhead and intermediate data persistence 
overhead for better scalability and reliability 

C. Iterative MapReduce and Twister4Azure 
Data-intensive iterative MapReduce computations are a 

subset of iterative computations, where individual iterations 
can be specified as MapReduce computations. Examples of 
applications that can be implemented using iterative MapRe-
duce include PageRank, Multi-Dimensional Scaling [1, 17], 
K-means Clustering, Descendent query [5], LDA, and Col-
laborative Filtering with ALS-WR. 

These data-intensive iterative computations can be per-
formed using traditional MapReduce frameworks like Ha-
doop by manually scheduling the iterations from the job cli-
ent driver, albeit in an un-optimized manner. However, there 
exist many possible optimizations and programming model 
improvements to enhance the performance and usability of 
the iterative MapReduce programs. Such optimization oppor-
tunities are highlighted by the development of many iterative 
MapReduce frameworks such as Twister [4], HaLoop [5], 
Twister4Azure [1], Daytona [18] and Spark [19]. Optimiza-
tions exploited by these frameworks include caching of loop-
invariant data, cache-aware scheduling of tasks, iterative-
aware programming models, direct memory streaming of 
intermediate data, iteration-aware fault tolerance, caching of 
intermediate data (HaLoop reducer input cache), dynamic 
modifications to cached data (e.g. genetic algorithm), and 
caching of output data (in HaLoop).  

Twister4Azure is a distributed decentralized iterative 
MapReduce runtime for Windows Azure Cloud that was de-
veloped utilizing Azure cloud infrastructure services. Twist-
er4Azure optimizes the iterative MapReduce computations 
by multi-level caching of loop invariant data, performing 
cache-aware scheduling, optimizing intermediate data trans-
fers, optimizing data broadcasts and many other optimiza-
tions described in Gunarathne et al [1]. 

IX. FUTURE WORKS – MAP-REDUCESCATTER 
There are iterative MapReduce applications where only a 

small subset of loop invariant data product is needed to pro-
cess the subset of input data in a Map task. In such cases, it’s 
inefficient to make all the loop invariant data available to 
such computations. In some of these applications, the size of 
loop variant data is too large to fit into the memory and intro-
duce communication and scalability bottlenecks as well. An 
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example of such a computation is PageRank. The Map-
ReduceScatter primitive, modeled after MPI ReduceScatter, 
is aimed to support such use cases in an optimized manner. 

Map-ReduceScatter gets rid of the inefficiency of simple 
broadcast ofing all the data to all the workers. Another alter-
native approach is to perform a join of loop invariant input 
data and loop variant data using an additional MapReduce 
step. However, this requires all the data to be transported over 
the network from Map tasks to Reduce tasks, making the 
computation highly inefficient.  

Map-ReduceScatter primitive is still a work in progress 
and we are planning on including more information about it 
in our future publications. 

X. CONCLUSIONS

We introduced Map-Collectives, collective communica-
tion operations for MapReduce inspired by MPI collectives, 
as a set of high level primitives that encapsulate some of the 
common iterative MapReduce application patterns. Map-
Collectives improve the communication and computation 
performance of the applications by enabling highly optimized 
group communication across the workers, getting rid of un-
necessary/redundant steps, and by enabling the frameworks 
to use a poly-algorithm approach based on the use case. Map-
Collectives also improve the usability of the MapReduce 
frameworks by providing abstractions that closely resemble 
the natural application patterns. They also decrease the im-
plementation burden on the developers by providing opti-
mized substitutions for certain steps of the MapReduce mod-
el. We envision a future where many MapReduce and itera-
tive MapReduce frameworks support a common set of porta-
ble Map-Collectives and consider this work as a step in that 
direction. 

In this paper, we defined Map-AllGather and Map-
AllReduce Map-Collectives and implemented Multi-
Dimensional Scaling and K-means Clustering applications 
using these operations. We also presented the H-Collectives 
library for Hadoop, which is a drop-in Map-Collectives li-
brary that can be used with existing MapReduce applications 
with only minimal modification. We also presented a Map-
Collectives implementation for Twister4Azure iterative 
MapReduce framework as well. MDS and K-means applica-
tions were used to evaluate the performance of Map-
Collectives on Hadoop and on Twister4Azure, depicting up to 
33% and 50% speedups over the non-collectives implementa-
tions by getting rid of the communication and coordination 
overheads. 
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