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Abstract. This paper proposes model rotation as a general approach to parallelize
big data machine learning applications. To solve the big model problem in paral-
lelization, we distribute the model parameters to inter-node workers and rotate dif-
ferent model parts in a ring topology. The advantage of model rotation comes from
maximizing the effect of parallel model updates for algorithm convergence while
minimizing the overhead of communication. We formulate a solution using com-
putation models, programming interfaces, and system implementations as design
principles and derive a machine learning framework with three algorithms built
on top of it: Latent Dirichlet Allocation using Collapsed Gibbs Sampling, Matrix
Factorization using Stochastic Gradient Descent and Cyclic Coordinate Descent.
The performance results on an Intel Haswell cluster with max 60 nodes show that
our solution achieves faster model convergence speed and higher scalability than
previous work by others.
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1. Introduction

Machine learning applications such as Latent Dirichlet Allocation (LDA) and Matrix
Factorization (MF) have been successfully applied on big data within various domains.
For example, Tencent uses LDA for search engines and online advertising [1] while
Facebook1 uses MF to recommend items to more than one billion people. With tens of
billions of data entries and billions of model parameters, these applications can help data
scientists to gain a better understanding of big data.

However, the growth of data size and model size makes it hard to deploy these
machine learning applications in a way that scales to our needs. A huge amount of effort
has been invested in parallelization of these applications, and yet much of the literature
deals with a framework-based approach using tools such as MPI2, (Iterative) MapReduce
[2][3], Graph/BSP [4], and Parameter Server [5]. At this stage, it remains unclear what
is the best approach to parallelization.

To bridge the gap, we propose a systematic approach, “model rotation”, which im-
proves the efficiency of model convergence speed and provides high scalability. This
solution involves fine-grained synchronization mechanisms in handling parallel model

1 https://code.facebook.com/posts/861999383875667/recommending-items-to-more-tha
n-a-billion-people

2 http://www.mpi-forum.org



updates. In the context of this paper, “model rotation” is a generalized parallel computa-
tion model that performs parallel model parameter computation via rotation of different
model parts in a ring topology. We provide programming interfaces for model rotation in
Harp MapCollective framework [6]. Further optimizations include pipelining to reduce
the communication overhead and dynamically controlling the time point of the model
rotation.

We investigate three core algorithms: Collapsed Gibbs Sampling (CGS) for LDA [7],
Stochastic Gradient Descent (SGD) for MF [8] and Cyclic Coordinate Descent (CCD)
for MF [9]. The experiments run with different datasets on up to a maximum of 60 nodes
and 1200 threads in an Intel Haswell cluster. We compare our CGS, SGD and CCD im-
plementations under model rotation-based framework with state-of-the-art implementa-
tions (Petuum for CGS, NOMAD for SGD and CCD++ for CCD) running side-by-side
on the same cluster. The results show that our solution exceeds their model convergence
speeds.

The rest of this paper is organized as follows. Section 2 explores the features of
model update in machine learning algorithms and the advantages of model rotation. Sec-
tion 3 describes the programming interface and the implementation. The experiment re-
sults are shown in Section 4, while Section 5 describes the related work. Section 6 gives
the conclusion.

2. Algorithms and Computation Models

In this section, we observe three important features of model updates in machine learning
algorithms (CGS for LDA, SGD and CCD for MF) whose model update formula is not of
the summation form introduced in [10]. For the algorithm parallelization, by discussing
the efficiency of different computation models, we highlight the benefits of using model
rotation.

2.1. Algorithms

Many machine learning algorithms are built on iterative computation, which can be for-
mulated as

At = F(D,At−1) (1)

In this equation, D is the observed dataset, A is model parameters to learn, and F is the
model update function. The algorithm keeps updating model A until convergence (by
reaching a stop criterion or a fixed number of iterations).

We use CGS for LDA, and SGD or CCD for MF as examples to show the nature of
model update dependency. The sequential pseudo code of the three algorithms is listed
in Table 1. LDA is a generative modeling technique using latent topics. CGS algorithm
learns the model parameters by going through the tokens in a collection of documents
D and computing the topic assignment Zi j on each token Xi j = w by sampling from a
multinomial distribution of a conditional probability of Zi j:

p
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Table 1. Sequential Pseudo Code of Machine Learning Algorithm Examples

CGS Algorithm for LDA

Input: training data X , the number of topics K, hyperparameters α,β

Output: topic assignment matrix Z, topic-document matrix M, word-topic matrix N
1. Initialize M,N to zeros
2. for document j ∈ [1,D] do
3. for token position i in document j do
4. Zi j = k ∼Mult( 1

K )

5. Mk j += 1;Nwk += 1
6. end for
7. end for
8. repeat
9. for document j ∈ [1,D] do

10. for token position i in document j do
11. Mk j −= 1;Nwk −= 1
12. Zi j = k′ ∼ p(Zi j = k|rest) {sample a new topic by Eq. (2) using SparseLDA [11]}
13. Mk′ j += 1;Nwk′ += 1
14. end for
15. end for
16. until convergence

SGD Algorithm for MF CCD Algorithm for MF

Input: training matrix V , the number of features
K, regularization parameter λ , learning rate ε

Output: row related model matrix W and column
related model matrix H

1. Initialize W,H to UniformReal(0,1/
√

K)
2. repeat
3. for random Vi j ∈V do
4. {L2 regularization}
5. error =Wi∗H∗ j−Vi j
6. Wi∗ =Wi∗− ε(error ·Hᵀ

∗ j +λWi∗)

7. H∗ j = H∗ j− ε(error ·Wᵀ
i∗+λH∗ j)

8. end for
9. until convergence

Input: training matrix V , the number of features
K, regularization parameter λ

Output: row related model matrix W and column
related model matrix H

1. Initialize W,H to UniformReal(0,1/
√

K)
2. Initialize residual matrix R to V −WH
3. repeat
4. for V∗ j ∈V do
5. for k = 1 to K do

6. s∗ =
∑i∈V∗ j (Ri j +Hk jWik)Wik

∑i∈V∗ j (λ +W 2
ik)

7. Ri j = Ri j− (s∗−Hk j)Wik
8. Hk j = s∗

9. end for
10. end for
11. for Vi∗ ∈V do
12. for k = 1 to K do

13. z∗ =
∑ j∈Vi∗ (Ri j +WikHk j)Hk j

∑ j∈Vi∗ (λ +H2
k j)

14. Ri j = Ri j− (z∗−Wik)Hk j
15. Wik = z∗

16. end for
17. end for
18. until convergence

In this equation, superscript ¬i j means that the corresponding token is excluded. V is the
vocabulary size. Nwk is the current token count of the word w assigned to topic k in K
topics, and Mk j is the current token count of the topic k assigned in the document j. α

and β are hyperparameters. The model includes Z, N, M and ∑w Nwk. When Xi j = w is
computed, some elements in the related row Nw∗ and column M∗ j are updated. Therefore
dependencies exist among different tokens when accessing or updating N and M model
matrices.

MF decomposes a m×n matrix V (dataset) to a m×K matrix W (model) and a K×n



matrix H (model). SGD algorithm learns the model parameters by optimizing the object
loss function composed by a squared error and a regularizer (L2 regularization is used
here). When an element Vi j is computed, the related row vector Wi∗ and column vector
H∗ j are updated. The gradient calculation of the next random element Vi′ j′ depends on
the previous updates in Wi′∗ and H∗ j′ . CCD also solves MF application. But unlike SGD,
the model update order firstly goes through all the rows in W and then the columns in H,
or all the columns in H first and then rows in W . The model update inside each row of W
or column of H goes through feature by feature.

Parallelization of these iterative algorithms can be done by utilizing either the paral-
lelism inside different components of model update function F or the parallelism among
multiple invocations of F . For the first category, the difficulty of parallelization lies in
the computation dependencies inside F , which are either between the data and the model
or among the model parameters. If F is in a “summation form”, such algorithms can be
easily parallelized through the first category [10]. However, in large-scale learning ap-
plications, the algorithms picking random examples in model update perform asymptot-
ically better than the algorithms with the summation form [12]. In this paper, we focus
on this type of algorithm with the second category of parallelism where the difficulty of
parallelization lies in the dependencies between iterative updates of a model parameter.
Thus when the dataset is partitioned to P parts, model updates in this kind of algorithm
only use one part of data entries Dp as

At = F(Dp,At−1) (3)

Obtaining the exact At−1 is not feasible in parallelization. It is challenging to parallelize
different invocations of F . However, these algorithms have certain features which can
maintain the algorithm correctness and improve the parallel performance.

I. The algorithms can converge even when the consistency of a model is not guar-
anteed to some extent. Algorithms can work on model A with an older version i when i
is within bounds [13], as shown in

At = F(Dp,At−i) (4)

By using a different version of A, Feature I breaks the dependency across iterations.
II. The update order of the model parameters is exchangeable. Although different

update orders can lead to different convergence rates, they normally don’t make the al-
gorithm diverge. If F only accesses and updates one of the disjointed parts of the model
parameters (Ap′ ), there is a chance of finding an arrangement on the order of model up-
dates that allows independent model parts to be processed in parallel while keeping the
dependencies.

At
p′ = F(Dp,At−1

p′ ) (5)

In CGS, we provide one update order by document, but other orders such as updating by
words are also correct since CGS allows order exchange. Two tokens of different words
in different documents can be trained in parallel since there is no update conflict in model
matrices N and M.

III. The model parameters for update can be randomly selected. CGS by its nature
supports random scanning on model parameters [14]. In SGD, a random selection on



model parameters for updating is done through randomly selecting examples from the
dataset. In CCD, the selection of rows or columns is also random.

2.2. Computation Models

A detailed description of computation models can be found in previous work [15]. Our
summary of related work helps to define computation models based on two properties.
One is whether the computation model uses synchronous or asynchronous algorithms
for parallelization. Another looks at whether the model parameters used in computation
are the latest or stale. Both the synchronization strategies and the model consistency can
impact model convergence speed.

Computation models using stale model parameters can be easily applied based on
Feature I of model updates. However, it does come with certain performance issues such
as less effective model updates. When a synchronized algorithm is applied, the compu-
tation model can be implemented via “allreduce”. By doing so, the routing can be opti-
mized while each worker retains a full copy of the model. For big models, this causes
high memory usage and can result in failure to scale for applications. Another method
is allowing each worker to only fetch the model parameters related to the local train-
ing data. This saves memory but offers less opportunity for routing optimization. When
an asynchronous algorithm is used, the computation model reduces the synchronization
overhead. However, since each worker directly communicates large numbers of model
updates, routing among the workers cannot be optimized. Without synchronization barri-
ers, this computation model does not aim for complete synchronization of model copies
on all the workers. As such, the model convergence speed is affected by the real network
speed. To solve this problem, Q. Ho et al. combine asynchronous algorithms and syn-
chronized algorithms into one computation model to guarantee the model convergence
and improve the speed [13].

The computation model with the latest model parameters provides more effective
model updates. It is commonly performed through “model rotation”. This method shows
many advantages. Unlike computation models using stale model parameters, there is no
additional local copy for model parameters fetched during the synchronization, meaning
the memory usage is low. Plus in a distributed environment, the communication only
happens between two neighboring workers so that the routing can be easily optimized.

CGS, SGD and CCD can all be implemented by the above-mentioned computation
models because of Features I and II of model updates [16][17][18][19][20][21][22]. Al-
though model rotation performs better [17][18][19][22], it may result in high synchro-
nization overhead in these algorithms due to the dataset being skewed and the unbalanced
workload of each worker [23][24]. Therefore the completion of an iteration has to wait
for the slowest worker. If the straggler acts up, the cost of synchronization becomes even
higher. In the implementation of our model rotation framework, we take these problems
into consideration and minimize the overhead.

3. Programming Interface and Implementation

We introduce our model rotation solution based on the Harp MapCollective framework.
Harp [6] works on top of Hadoop MapReduce system and provides collective commu-



nication operations to synchronize Map tasks. The following demonstrates how model
rotation is applied to three algorithms: CGS for LDA, SGD and CCD for MF.

3.1. Data and Model

The structure of the training data can be generalized as a tensor. For example, the dataset
in CGS is a document-word matrix. In SGD, the dataset is explicitly expressed as a
matrix. When it is applied to recommendation systems, each row of the matrix represents
a user and each column an item; thus every element represents the rating of a user to an
item. In these matrix structured training data, a row has a row-related model parameter
vector as does a column. For quickly visiting data entries and related model parameters,
indices are built on the row IDs and column IDs. Based on the model settings, the number
of elements per vector can be very large. As a result, both row-related and column-related
model structures might be large matrices.

In CGS and SGD, the model update function allows for the data to be split by rows
or columns so that one model (with regards to the matching row or column of training
data) is cached with the data, leaving the other to be rotated. For CCD, the model update
function requires both the row-related model matrix W and the column-related model
matrix H to be rotated. We abstract the model for rotation as a distributed data structure
organized as partitions and indexed with partition IDs. A partition can be expressed as an
array if the vector is dense, or as a key-value pair if sparse. In CGS, each partition holds
a word’s topic counts. In SGD, each partition holds a column’s related model parameter
vector. In CCD, each partition holds a feature dimension’s parameters of all the rows or
columns.

3.2. Operation API

We express model rotation as a collective communication. The operation takes the model
part owned by a process and performs the rotation. By default, the operation sends the
model partitions to the next neighbor and receives the model partitions from the last
neighbor in a predefined ring topology of workers. An advanced option is that we can dy-
namically define the ring topology before performing the model rotation. Thus program-
ming model rotation requires just one API. For local computation inside each worker,
we simply program it through an interface of “schedule-update”. A scheduler employs a
user-defined function to maintain a dynamic order of model parameter updates and avoid
the update conflict. Since the local computation only needs to process the model obtained
during the rotation without considering the parallel model updates from other workers,
the code of a parallel machine learning algorithm can be modularized as a process of
performing computation and rotating model partitions (see Figure 1).

3.3. Pipelining and Dynamic Rotation Control

The model rotation operation is implemented as a non-blocking call so that the efficiency
of model rotation can be optimized through pipelining. We divide the distributed model
parameters on all the workers into two sets A∗a and A∗b (see Figure 2a). The pipelined
model rotation is conducted in the following way: all the workers first compute Model
A∗a with related local data. Then they start to shift A∗a, and at the same time they com-
pute Model A∗b. When the computation on Model A∗b is completed, it starts to shift.
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6. end for
7. end for
8. end parallel for

Figure 1. Execution Flow and Pseudo Code of Model Rotation

All workers wait for the completion of corresponding model rotations and then begin
computing model updates again. Therefore the communication is overlapped with the
computation. In this pipelining mechanism, each time a chunk of model parameters is
computed and communicated. In experiments, communicating model parameters in large
batches is more efficient than flooding the network with small messages [23].

Utilizing Features II and III in model update, we also allow dynamic control on the
invocation of model rotation based on the time spent on computation (see Figure 2b). In
CGS for LDA and SGD for MF, assuming each worker caches rows of data and row-
related model parameters and obtains column-related model parameters through rotation,
it then selects related training data to perform local computation. We split the data and
model into small blocks which the scheduler dynamically selects for model update while
avoiding the model update conflicts on the same row or column. Once a block is pro-
cessed by a thread, it reports the status back to the scheduler. Then the scheduler searches
another free block and dispatches to an idle thread. We set a timer to oversee the training
progress. When the designated time arrives, the scheduler stops dispatching new blocks,
and the execution ends. Because the computation is load balanced with the same length
of time, the synchronization overhead is reduced. In the iterations of model rotations,
the time length is further adjusted based on the amount of data items processed. But in
CCD, the algorithm dependency does not allow us to dynamically control the model ro-
tation. The reason is that in each iteration of CCD, each model parameter is only up-
dated once. Using dynamic control results in incomplete model updates in each iteration,
which reduces the model convergence speed.

3.4. Algorithm Parallelization

• CGS: When parallelizing CGS with model rotation, the training data is split by
document. As a result, the document-topic model matrix is partitioned by docu-
ments while the word-topic model matrix is rotated among processes. Documents
are partitioned into blocks on each worker. Inside each block, inverted index is
used to group tokens by word. The word-topic matrix owned by the worker is
also split into blocks. By selecting a document block ID and a word block ID, we
can train a small set of data and update the related model parameters. Because
the computation time per token changes as the model converges [23], the amount
of tokens which can be trained during a time period grows larger. As a result, we
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Figure 2. Model Rotation Mechanisms

keep an upper bound and a lower bound for the amount of tokens trained between
two invocations of model rotation.

• SGD: Both W and H are model matrices. Assuming n < m, then V is regrouped
by rows, W is partitioned with V , and H is the model for rotation. The ring topol-
ogy for rotation is randomized per iteration for accelerating the model conver-
gence. For pipelining and load balancing, we estimate the ratio of computation
and communication cost, and determine the time point to perform model rotation.

• CCD: Both W and H are model matrices. Because model update on a row of W
needs all the related data items on the same row and model update on a column of
H needs all the related data items on the column, the training data is duplicated so
that one is regrouped by rows and another is regrouped by columns among work-
ers. However, the model update on each feature dimension is still independent.
Then we split W and H by features and distribute them across workers. Both W
and H are rotated for parallel updating of each feature vector in W and H.

4. Experiments

4.1. Training Dataset and Model Parameter Settings

Four datasets are used in the experiments. For LDA and MF applications, each has one
small dataset and one big dataset. The datasets and related training parameters are pre-
sented in Table 2. Two big datasets are generated from the same source “ClueWeb09”3,
while two small datasets are generated from Wikipedia4. With different types of datasets,
we show the effectiveness of our model rotation solution on the model convergence
speed. In LDA, the model convergence speed is evaluated with respect to the model like-
lihood, which is a value calculated from the trained word-topic model matrix. In MF, the
model convergence speed is evaluated by the value of Root Mean Square Error (RMSE)
calculated on the test dataset, which is from the original matrix V but separated from the

3 http://lemurproject.org/clueweb09.php
4 https://www.wikipedia.org



Table 2. Training Datasets

LDA
Dataset Documents Words Tokens CGS Parameters

clueweb1 76163963 999933 29911407874
K = 10000 α = 0.01 β = 0.01

enwiki 3775554 1000000 1107903672

MF
Dataset Rows Columns Non-Zero

Elements
SGD

Parameters
CCD

Parameters

clueweb2 76163963 999933 15997649665
K = 2000
λ = 0.01
ε = 0.001

K = 120
λ = 0.1hugewiki 50082603 39780 3101135701

K = 1000
λ = 0.01
ε = 0.004

Table 3. Test Plan

Dataset
Node

Xeon E5 2699 v3
(each uses 30 Threads)

Xeon E5 2670 v3
(each uses 20 Threads)

clueweb1 Harp CGS vs. Petuum (on 30) Harp CGS vs. Petuum (on 30/45/60)

enwiki Harp CGS vs. Petuum (on 10)

clueweb2
Harp SGD vs. NOMAD (on 30)
Harp CCD vs. CCD++ (on 30)

Harp SGD vs. NOMAD (on 30/45/60)
Harp CCD vs. CCD++ (on 60)

hugewiki
Harp SGD vs. NOMAD (on 10)
Harp CCD vs. CCD++ (on 10)

training dataset. In addition, we examine the scalability of implementations through the
tests on the big datasets.

4.2. Comparison of Implementations

We compare six implementations in the experiments. First is CGS implemented with
Harp compared to CGS implemented with Petuum LDA5. Then we compare SGD imple-
mented with Harp to SGD implemented with NOMAD6. Later we compare CCD imple-
mented with Harp to CCD++7. The three compared implementations are the fastest open-
source implementations we surveyed from the related work. Note that Petuum LDA,
NOMAD and CCD++ are all implemented in C++11 while Harp CGS and Harp SGD
are implemented in Java 8, so it is quite a challenge for us to exceed them in perfor-
mance. Petuum LDA uses Open MPI8 for multi-processes, POSIX threads for multi-
threading, and ZeroMQ9 for communication. Although Petuum uses model rotation at an
inter-node level, intra-node multi-threading is deployed with asynchronous algorithms
and stale model parameters. NOMAD uses MPICH210 for inter-node processes and In-

5 https://github.com/petuum/strads/tree/master/apps/lda_release
6 http://bikestra.github.io
7 http://www.cs.utexas.edu/~rofuyu/libpmf
8 https://www.open-mpi.org
9 http://zeromq.org
10 http://www.mpich.org



tel Thread Building Blocks11 for multi-threading. In NOMAD, MPI Send/MPI Recv are
communication operations, but the destination of model shifting is randomly selected
without following a ring topology. CCD++ also uses MPICH2 for inter-node processes
with collective communication operations and OpenMP12 for multi-threading.

4.3. Parallel Execution Environment

Experiments are conducted on a 128-node Intel Haswell cluster at Indiana University.
Among them, 32 nodes each have two 18-core Xeon E5-2699 v3 processors (36 cores
in total), and 96 nodes each have two 12-core Xeon E5-2670 v3 processors (24 cores
in total). All the nodes have 128 GB memory and are connected by QDR InfiniBand.
For our tests, JVM memory is set to “-Xmx120000m -Xms120000m”, and IPoIB is used
for communication. The implementations are tested on two types of machines separately
(see Table 3). We focus on the convergence speed and scaling on the test configurations
in which computation time is still the main part of the whole execution. For the small
datasets, we use 10 Xeon E5-2699 v3 nodes each with 30 threads, while the big datasets
are undertaken by 30 Xeon E5-2699 v3 nodes each with 30 threads and 60 Xeon E5-2670
nodes each with 20 threads to compare the model convergence speed among different
implementations. We further examine the scalability with 30, 45, and 60 Xeon E5-2670
v3 nodes each with 20 threads.

4.4. Model Convergence Speed

In CGS, through examination of the model likelihood achieved by the training time, the
results on two different datasets all show that Harp consistently outperforms Petuum. We
test Harp CGS and Petuum on “clueweb1” with 30×30 and 60×20 two configurations
(see Figure 3a and Figure 3b). Both results show that Harp CGS converges faster than
Petuum. We also test “enwiki” on 10× 30 and the result is the same (see Figure 3c).
Concerning the convergence speed on the same dataset with different configurations, we
observe that the fewer the number of cores used and the more computation per core,
the faster Harp runs compared to Petuum. When the scale goes up, the difference in the
convergence speed reduces. With 30× 30 Xeon E5-2699 v3 nodes, Harp is 45% faster
than Petuum while with 60×20 Xeon E5-2670 v3 nodes, Harp is 18% faster than Petuum
when the model likelihood converges to −1.37×1011 (see Figure 3j).

In SGD, Harp SGD also converges faster than NOMAD. On “clueweb2” (see Figure
3d and Figure 3e), with 30× 30 Xeon E5-2699 v3 nodes, Harp is 58% faster, and with
60×20 Xeon E5-2670 v3 nodes, Harp is 93% faster when the test RMSE value converges
to 1.61 (see Figure 3k). The difference in the convergence speed increases because the
random shifting mechanism in NOMAD becomes unstable when the scale goes up. We
also test the small dataset “hugewiki” on 10×30 Xeon E5-2699 v3 nodes, and the result
remains that Harp SGD is faster than NOMAD (see Figure 3f).

In CCD, we again test the model convergence speed on “clueweb2” and “hugewiki”
datasets (see Figure 3g, Figure 3h and Figure 3i). The results show that Harp CCD also
has comparable performance with CCD++. Note that CCD++ uses a different model
update order, so that the convergence rate based on the same number of model update

11 https://www.threadingbuildingblocks.org
12 http://openmp.org/wp
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(e) SGD, clueweb2, 60x20
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(g) CCD, clueweb2, 30x30
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Figure 3. Model Convergence Speed Comparison on CGS, SGD and CCD

count is different with Harp CCD. However, the tests on “clueweb2” reveal that with
30×30 Xeon E5-2670 v3 nodes, Harp CCD is 53% faster than CCD++ and with 60×20
Xeon E5-2699 v3 nodes Harp CCD is 101% faster than CCD++ when the test RMSE
converges to 1.68 (see Figure 3l).

All the convergence charts demonstrate that Harp implementation is faster than the
related implementations on the same algorithm. Though the percentage of speedup may
vary as we change the convergence point and the scale, the overall difference is still
significant in the whole convergence process.
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Figure 4. Scaling of SGD and CGS on 30, 45, 60 Xeon E5-2699 v3 Nodes

4.5. Scalability

We further evaluate the scalability of Harp implementations by focusing on the com-
parison between different implementations of CGS and SGD. We do not include CCD
because regardless of whether we use Harp or CCD++, both W and H model matrices
are required to be synchronized rather than only rotating H in SGD. There is more com-
munication time than computation time per iteration, hence the iteration time does not
decrease much when the scale goes up, resulting in low scalability.

Since the convergence speed is not linear as the execution time passes, we use
throughput on the number of training data items processed to evaluate the scalability of
CGS and SGD implementations. In SGD, the time complexity of processing a training
data item is O(K) for all the elements in V ; as such this metric is suitable for evaluating
the performance of SGD implementations on different scales. Figure 4a shows that the
throughput of Harp at 1000s achieves 1.7× speedup when scaling from 30 to 60 nodes.
Meanwhile, NOMAD only achieves 1.5× speedup. The throughput of NOMAD on three
scales are all lower than Harp. The situation on CGS is a little different. Since the time
complexity of sampling each token is O(∑k1(Nwk 6= 0)+∑k1(Nk j 6= 0)), the time com-
plexity decreases during the convergence. As a result, the throughput on the number of
tokens processed grows higher and higher as the execution time passes. When the dy-
namic rotation control is applied, Harp can sample more tokens as the execution pro-
gresses, which results in super linear speedup. Figure 4b shows the throughput of Harp
and Petuum at 8000s. Harp has higher throughput than Petuum on the three scales.

5. Related Work

Much initial work on machine learning algorithms deploys one computation model and
a single programming interface. Mahout13 [10], Spark Machine Learning Library14, and
Graph-based tools such as PowerGraph15 [4] are three such examples. All these imple-

13 http://mahout.apache.org
14 https://spark.apache.org/docs/latest/mllib-guide.html
15 https://github.com/turi-code/PowerGraph/tree/master/toolkits



mentations are based on synchronized algorithms. Meanwhile, Parameter Server solu-
tions [5][25][26] use asynchronous algorithms in which a programming interface allows
each worker to “push” or “pull” model parameters for local computation. As mentioned
in Section II, these solutions are not efficient for solving LDA and MF applications be-
cause they use computation models with stale model parameters which do not converge
as fast as solutions using model rotation [15].

Model rotation has been applied before in machine learning. In LDA, F. Yan et al.
implement CGS on a GPU [27]. In MF, DSGD++ [22] and NOMAD [28] use model
rotation in SGD for MF in a distributed environment while LIBMF [24] applies it to
SGD on a single node through dynamic scheduling. Another work, Petuum STRADS
[17][18][19], supplies a general parallelism solution called “model parallelism” through
“schedule-update-aggregate” interfaces. This framework implements CGS for LDA us-
ing model rotation but not CCD for MF16. Instead it uses “allgather” operation to collect
model matrices W and H without using model rotation. Thus Petuum CCD cannot be ap-
plied to big model applications due to the memory constraint. The interfaces of Petuum
STRADS operate at the model parameter level but not in a collective way, resulting in
communication inefficiency. Despite these shortcomings, Petuum LDA and NOMAD are
still among the fastest implementations we know among open-source implementations
of the two algorithms.

CCD++ uses a parallelization method on CCD different from either Petuum CCD or
our model rotation implementation. CCD++ allows parallelization on updating different
elements in a single feature vector of W and H. In such a way, only one feature vector in
W and one feature vector in H are “allgathered”. Thus there is no memory constraint in
CCD++ compared with Petuum CCD.

6. Conclusion

To solve big model problems in machine learning applications such as LDA and MF, this
paper focuses on three algorithms, CGS, SGD and CCD, and gives a full solution using
model rotation, which includes computation model innovation, programming interface
design, and implementation improvements. For the algorithms without the “summation
form”, we identify three important features in the model update mechanism and conclude
that model rotation is more efficient compared to other computation models. We design
the model rotation API with MapCollective programming interface which is more conve-
nient than parameter-level APIs of other implementations. Finally, we use pipelining and
dynamic rotation control to improve the efficiency of model rotation in CGS and SGD.
With these steps, we achieve higher scalability and faster model convergence speed com-
pared with related work. In the future, we can apply our model rotation solution to other
large-scale learning applications with big models. Future research will also investigate
providing templates for performance to guide developers to parallelize different machine
learning applications based on data, algorithm, and hardware.

16 https://github.com/petuum/strads/tree/master/apps
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