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Abstract—MapReduce has been adopted widely in both
academia and industry to run large-scale data parallel applica-
tions. In MapReduce, each slave node hosts a number of task
slots to which tasks can be assigned. So they limit the maximum
number of tasks that can execute concurrently on each node.
When all task slots of a node are not used, the resources
“reserved” for idle slots are unutilized. To improve resource
utilization, we propose resource stealing to enable running
tasks to steal resources reserved for idle slots and give them
back proportionally whenever new tasks are assigned. Resource
stealing makes the otherwise wasted resources get fully utilized
without interfering with normal job scheduling. MapReduce
uses speculative execution to improve fault tolerance. Current
Hadoop implementation decides whether to run speculative
tasks based on the progress rates of running tasks, which does
not take into consideration the absolute progress of each task.
We propose Benefit Aware Speculative Execution which eval-
uates the potential benefit of speculative tasks and eliminates
unnecessary runs. We implement the proposed algorithms in
Hadoop, and our experiments show that our algorithms can
significantly shorten job execution time and reduce the number
of non-beneficial speculative tasks.

Keywords-MapReduce; scheduling; utilization; speculative
execution

I. INTRODUCTION

Data deluge has been observed in many science areas such
as particle physics, astronomy, and biology. A significant
amount of computation power is demanded to process the
ever-growing quantity of data collected by modern instru-
ments such as Large Hadron Collider and next-generation
gene sequencers. Message Passing Interface (MPI) [1] has
been used widely in High Performance Computing (HPC) as
a programming model. In data-intensive computing, frequent
data movement incurs significant load on network and stor-
age which may dominate the overall application execution.
Data affinity is implicitly integrated into task scheduling
in recently proposed data parallel systems among which
MapReduce is representative. MapReduce [2] has quickly
gained popularity in both academia and industry. It been
used in indexing [2], bioinformatics [3], machine learning
[4], etc. Hadoop is a widely-used implementation of MapRe-
duce and thus our research target. Besides Hadoop, other
data parallel systems including Dryad [5] and Sector/Sphere
[6] have been developed with different features.

In MapReduce, multiple tasks can run in parallel on

each node to exploit the parallel processing capability of
modern multi-core processors. To limit the degree of task
concurrency and thus avoid intense resource contention,
each slave node hosts a configurable number of map and
reduce slots to which map and reduce tasks are scheduled
for execution respectively. In Hadoop implementation, each
slave node has 2 map slots and 2 reduce slots by default.
A task slot gets occupied when a task is assigned to it, and
gets released when the task completes. The hard partition of
physical processing capability into virtual map and reduce
slots has drawbacks. Firstly, it is not trivial to determine
the optimal numbers of map and reduce slots. Secondly,
it results in resource underutilization when there are not
enough tasks to occupy all slots, which is mitigated by our
proposed resource stealing.

In distributed systems, failure is the norm rather than the
exception. Speculative execution is adopted by MapReduce
to support fault tolerance. The master node keeps track
of the progresses of all scheduled tasks. When it finds a
task that runs unusually slow compared with other tasks
of the same job, a speculative task is launched to process
the same input data with the hope that it will complete
earlier than the original task. To maximize efficiency, the
number of speculative tasks should be minimized which
complete later than original tasks and do not speed up the
overall job execution. In Hadoop, the default mechanism
to trigger speculative execution only considers the progress
rates of running tasks, and incurs the execution of many
non-beneficial speculative tasks. We propose Benefit Aware
Speculative Execution to solve it.

The rest of this paper is organized as follows. Related
literatures are presented in section II. The design and im-
plementation details of our proposed resource stealing algo-
rithm and BASE are described in section III. Experimental
evaluations are presented in section IV. Finally conclusions
and future work are summarized in section V.

II. RELATED WORK

The term speculative execution has been used in different
contexts. For example, at instruction level, branch predictors
guess which branch a conditional jump will go to and
speculatively execute the corresponding instructions [7]. For
distributed systems where communication overhead is sub-



stantial, task duplication redundantly executes some tasks on
which other tasks critically depend [8]. So task duplication
mitigates the penalty of data communication by running
the same task on multiple nodes. Speculative execution in
MapReduce employs a similar strategy but is mainly used
for fault tolerance. To improve MapReduce performance in
heterogeneous environments, Longest Approximate Time to
End (LATE) is proposed which aims to robustly perform
speculative execution by prioritizing tasks to speculate,
selecting fast nodes to run on, and limiting the number of
speculative tasks [9]. Our BASE algorithm improves upon
LATE to further maximize performance.

Work stealing enables idle processors to steal computa-
tional tasks from other processors and is more communi-
cation efficient than its work-sharing counterparts [10]. Our
proposed resource stealing shares similar motivations. But
the execution model of MapReduce is logically independent
of underlying hardware while work stealing is closely cou-
pled with processors. Cycle stealing enables busy nodes to
take control of idle nodes, supply them with work, and re-
ceive results [11]. The motivation is to harness the otherwise
wasted resources of idle nodes. Task splitting yields better
load balancing across nodes by dynamically adjusting task
granularities [12]. Our proposed resource stealing is applied
at a lower level to the resources located on individual nodes.
Iterative MapReduce optimizes the execution of iterative ap-
plications by aggressively caching and reusing intermediate
data across iterations [13]. Mantri monitors task execution
and acts on outliers early using cause- and resource-aware
techniques including restarting outliers, network-aware task
placement, and replicating outputs of valuable tasks [14].

In grid systems, batch queuing has been used extensively.
When a job is scheduled, the requested number of nodes
are reserved for a specific period of time even though the
resource usage may vary across the phases of the job.
Backfilling moves small jobs ahead to leapfrog big jobs
in front to alleviate fragmentation and improve resource
utilization [15]. Backfilling does not delay the first job or any
job waiting in the queue depending on its aggressiveness.
Batch queuing systems adopt reservation-based resource
allocation mechanisms while resources are shared among
jobs in MapReduce. In resource stealing, jobs are not re-
ordered or moved in the queue and stealing is done at task
level without impacting job scheduling at all, so it is a finer-
grained and lower-level optimization of resource usage.

III. OUR APPROACHES

A. Resource Stealing (RS)
Motivation: How to tune Hadoop parameters automati-

cally has been studied in [16][17]. In this paper, we assume
the number of task slots is set optimally so that ideal
resource utilization is achieved when all slots are occupied.
Resource utilization is proportional to the number of occu-
pied slots approximately. Usually, the utilization of real data

centers is low. For example, according to the real traces
of production clusters, CPU utilization was 5%–10% in
Yahoo’s M45 cluster [18] and below 50% mostly in a multi-
thousand node Google cluster [19]. The low utilization may
be caused by several factors. There may not be sufficient
workload to keep the whole cluster busy. Or most of the
submitted jobs are disk- or IO-bound so that CPU is not
the bottleneck. In addition, resource utilization varies across
time periods. It implies idle slots exist in most large systems
and the capability of resources can be further exploited to
minimize job run time. The portion of the resources that
sit idle on a slave node is termed residual resources which
can be utilized without incurring severe usage contention
or degrading overall performance. We can consider that
residual resources are reserved for prospective tasks that will
be assigned to currently idle slots. One advantage of resource
reservation is resource availability is guaranteed whenever a
new task is assigned. However, a drawback is that residual
resources are left unused until new tasks are assigned.

Resource stealing: We propose resource stealing to im-
prove resource utilization. The resource usage of running
tasks (if any) on each node is dynamically expanded or
shrunk according to the availability of task slots. When there
are idle slots on a slave node, its running tasks temporarily
steal resources reserved for prospective tasks so that residual
resources are fully utilized. If a node is perfectly loaded
after resource stealing is applied, to assign a new task
obviously will overload it and degrade the performance of
running tasks. Our solution is to shrink the resource usage
of running tasks by making them relinquish stolen resources
proportionally to new tasks. In this way, resource stealing
does not violate the assumption made by Hadoop scheduler
that resources are guaranteed for new tasks, which is critical
to efficient Hadoop scheduling. To summarize, the overall
philosophy is to steal residual resources if corresponding
map/reduce slots are idle, and hand them back whenever new
tasks are launched to occupy those slots. Resource stealing
is applied on each slave node locally. From the perspective
of the central task scheduler running on the master node,
idle slots on slave nodes are still available and new tasks
can be assigned to them, so resource stealing is transparent
to the task scheduler and can be used in combination with
any existing Hadoop scheduler directly such as fair scheduler
and capability scheduler. Resource stealing runs periodically
with the up-to-date information of task execution and system
status, so it is adaptive in the sense that it reacts to real-time
changes of the system state.

B. Allocation Policies of Residual Resources
Given residual resources and the number of running tasks

on a slave node, the next issue is how to distribute residual
resources among running tasks, i.e. which tasks should get
how much. The policies can range from simple to complex
in their use of system state information. Complex policies



Table I
ALLOCATION POLICIES OF RESIDUAL RESOURCES

Policy Description
Even Evenly allocate residual resources to tasks.

First-Come-
Most

The task that starts earliest is given residual
resources.

Shortest-Time-
Left-Most

The task that will complete soonest is given
residual resources (on a per-node basis).

Longest-Time-
Left-Most

The task that will complete latest is given residual
resources (on a per-node basis).

Speculative-
Tasks-Most

Speculative tasks are given residual resources.

Laggard-Tasks-
Most

Straggler tasks are given residual resources.

have the potential to take full advantage of the processing
capability of each slave node. The disadvantages include
high overhead cost and the risk that a well tuned policy
may behave unpredictably when inaccurate state information
is collected. We come up with several policies summarized
in Table I.

Even: This policy equally divides residual resources
among running tasks. It is inherently stable because of not
relying on the collection or prediction of system state (and
thus not impacted by the information inaccuracy).

First-Come-Most (FCM): This policy orders running
tasks by start time. The task with the earliest start time
is given residual resources. The heuristic is to make tasks
complete in the order of job submission with best efforts.

Shortest-Time-Left-Most (STLM): Firstly, the remain-
ing execution time of tasks is estimated, where different
mechanisms can be plugged in. Here we adopt the same
mechanism used in [9] which assumes each task progresses
at a constant rate across time and predicts the time left based
on prior progress rate and current progress. The task with the
shortest time left is given residual resources. The heuristic
is to make close-to-completion tasks complete as soon as
possible to make way for long-running tasks. This policy is
applied locally on individual slave nodes.

Longest-Time-Left-Most (LTLM): This policy is the
same as STLM except that the task with the longest time
left is given residual resources.

Speculative-Task-Most (STM): Speculative execution
aims to mitigate the impact of slow tasks by duplicate
their processing on multiple nodes. The basic idea of STM
policy is that speculative tasks are given more resources than
regular tasks with the hope that they will not hurt job run
time. Because speculative tasks obtain more resources, they
can run faster and will not be “stragglers” any longer with
high probability. If there are no speculative tasks on a node,
it falls back to the regular case and any other policy can be
applied. If there are multiple speculative tasks running on a
node, residual resources are allocated to them evenly.

Laggard-Task-Most (LTM): This policy does not dis-
tinguish between regular and speculative tasks. Instead, for
each job we use the estimated remaining execution time of

all its scheduled tasks (both regular and speculative tasks)
to calculate the fastness of running tasks using (1) where T
is a task, t is a time point, Nl(t, T ) is the number of tasks
that are expected to complete later than T , and Nr(t) is
the number of running tasks. Fastness reflects the expected
order of task completion for each job; and a task with small
fastness will complete after a task with large fastness.

fastness(t, T ) =
Nl(t, T )

Nr(t)
(1)

The fastness of a task cannot be computed locally by
a slave node because it requires the information of all
other tasks belonging to the same job. The master node
maintains the statuses of all tasks and thus is the ideal
component to compute fastness. Each slave node reports
the statuses (e.g. progress, failure) of its running tasks to
the master node in heartbeat messages. After collecting
the information of all the tasks of a job, the master node
calculates the fastness of each running task and returns it
to the corresponding slave node. Upon receiving fastness
information, slave nodes order tasks by fastness. The tasks
whose fastness is smaller than threshold SlowTaskThreshold
(a user configurable parameter) are called laggards and given
residual resources. If there are multiple laggards on a node,
residual resources are evenly allocated to them.

As we discussed, the motivation of speculative execution
is to improve performance by running duplicate processing.
There are several drawbacks. Firstly, if speculative execution
is triggered, the completion of any task renders the work
done by other duplicate tasks to be useless. Secondly, if the
slowness of tasks is caused by intermittent and temporary
resource contention, it is highly likely that they do not lag
much behind and still complete earlier than their speculative
tasks, which subverts the motivation of speculative execu-
tion. Thirdly, sometimes speculative execution deteriorates
performance rather than improve it [9]. LTM reduces the
invocations of speculative execution by proactively allo-
cating more resources to laggards whenever possible and
thus accelerating their execution. Fourthly, the tasks of a
job may be heterogeneous intrinsically in that their run
time varies greatly depending upon both data size and the
content of the data. For example, easy and difficult Sudoku
puzzles have similar input sizes (9 x 9 grids) but require
substantially different amounts of computation to solve.
Speculative execution is not helpful because the efficiency
variation is not mainly caused by extrinsic factors (e.g. faulty
nodes) and the run time will not be reduced significantly no
matter how many speculative tasks are run. In that case, the
tasks demanding the most computation progress slower than
other tasks and thus are the laggards with small fastness.
LTM speeds up their execution by assigning more resources.
By balancing the workload within each job, LTM reduces
both job run time and the number of speculative tasks. The
assignments of new tasks decrease the amount of residual



Table II
PROBABILITY OF ACHIEVING DATA LOCALITY

RF* regular task speculative task

1 p q · p

2 1− q2 (q2 + p) · (1− q2)

Table III
ENERGY CONSUMPTION OF REGULAR AND SPECULATIVE TASKS (DATA ACCESSING)

RF* regular task speculative task

1 p · EL + q · ENL q · p · EL + (1− q · p) · ENL

2 (1− q2) · EL + q2 · ENL (q2 + p)(1− q2) · EL + (1− (q2 + p)(1− q2)) · ENL

* RF: Replication factor

resources while the completion of running tasks increases
the amount of residual resources. They both trigger the re-
allocation of residual resources.

C. The BASE Scheduler
Speculative execution is not a simple matter of running

redundant tasks for sufficiently slow tasks. To make it
effective, two issues need to be addressed: i) detecting slow
tasks; ii) choosing the tasks to speculate. Hadoop identifies
the tasks whose progress rates are one standard deviation
lower than the mean of all tasks as slow tasks. Then it
chooses the task with the longest remaining execution time
to speculate. It does not take into consideration whether
speculative tasks will complete before the original tasks.
Assume a job has two tasks A and B; task A is 90% done
but progresses slowly with rate 1; and task B progresses
fast with rate 5. Because task A progresses much slower
than average rate ( 5+1

2 =2.5), the master node decides to
start a speculative task A′ which progresses with rate 5.
By doing a little math, we can easily figure out that task A′

will complete later than task A although task A′ progresses
much faster. The reason is that task A is close to completion
when A′ is launched. This inefficiency was observed in
our tests, where a large portion of speculative tasks were
killed before their completion as the original tasks completed
earlier. Those speculative tasks were not beneficial and their
execution resulted in the inefficiency of resource usage, so
they are termed Non-Beneficial Speculative Tasks (NBST).

One argument is that given idle resources in most clusters
speculative execution should be applied aggressively to
eliminate the impact of straggler tasks and thus accelerate
job execution. From the perspective of pure performance,
aggressive application of speculative execution can poten-
tially reduce overall job run time. However this argument
bears several pitfalls. For regular and speculative tasks,
the probabilities of achieving data locality are different.
Hadoop randomly places data blocks among nodes and
thus eliminates hot spots for most workload in multi-user
environments. For an individual job, let p denote the average
probability that a task can achieve data locality. According
to the trace shown in [20], we vary p between 0.5 and
0.9 and use q to denote 1 – p. Table II shows how likely
a regular task and its speculative task achieve data locality
for different replication factors, which is visualized in Fig.
1 (a). Obviously speculative tasks have lower probability
to achieve data locality than regular tasks by up to 90%
and 25% for replication factor 1 and 2 respectively. The
degradation of data locality results in more data movement
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(b) Energy consumption

Figure 1. Comparison of regular and speculative tasks

and network traffic. Besides, energy consumption is also
increased. Some studies show inter-node data movement
requires much more energy than local memory accessing
by 10 to 20 times [21][22]. Table III shows the expected
energy consumption where EL and ENL are the amounts
of energy consumed by the accessing of local and non-
local data respectively. We set the ratio of ENL to EL to
20 and plot the results in Fig. 1 (b) from which we can
see speculative tasks are much less efficient. Adopting a
large replication factor can potentially mitigate the problem
but requires more storage space and incurs higher data
management overhead. Thus, it is cost prohibitive to blindly
create an excessive number of speculative tasks without
evaluating their potential benefit. What we want to achieve
is to eliminate speculative execution as much as possible
without sacrificing performance.

To overcome the issue, we propose Benefit Aware Spec-
ulative Execution (BASE) in which speculative tasks are
launched only when they are expected to complete earlier
than the original tasks. The estimation of the remaining
execution time of a running task has been discussed above.
We propose a mechanism to estimate the execution time of
prospective speculative tasks. It depends upon two factors:
i) the progress rates of other tasks of the same job; ii) the
node where the speculative task will run. The key is to
estimate the progress rate which can be directly used to
calculate run time. Slow tasks can be identified using the
mechanism described in [9]. Given a slow task T of job
J and a slave node Ni, the following algorithm solves the
problem whether a speculative task T ′ should be launched
for T on Ni.
1) If some tasks belonging to job J are running or have

run on node Ni, the mean of their progress rates is
calculated and used as the progress rate of T ′.

2) Otherwise, progress rates of all scheduled tasks of job J
are gathered and normalized against the reference base-
line. The normalization, computed based on hardware



processing power, is needed to eliminate the effect of
hardware heterogeneity. Then the mean of normalized
progress rates is calculated. Because the mean is against
the reference baseline, we de-normalize it against the
specification of node Ni to compute the expected
progress rate of T ′ on Ni. We assume the scheduling
order of tasks is stochastic approximately and thus the
mean of the progress rates of scheduled tasks reflects
the mathematical expectation of real progress rate,
which is reasonable given Hadoop scheduling strategy.

3) No matter which of 1) and 2) is applied, the estimated
progress rate of T ′ has been calculated so far. The
execution time is 1/progress rate. If the difference of
the estimated execution time of T and T ′ is larger than
a preset threshold, T ′ is launched on Ni. Otherwise, do
not run T ′ on Ni.

To predict the run time of T ′ via the mean of progress
rates actually is equivalent to the harmonic mean of the run
time of scheduled tasks.

Our algorithm considers the heterogeneity of hardware
capability of slave nodes. In step 2 above, the progress rate
of T ′ is estimated based on that of all other tasks. For the
less typical cases where the disparity of progress rates is
mainly caused by node-specific failure or software stack, a
more complex heuristic can be designed. For node Ni, a set
of “similar” nodes would be selected for the estimation of
the progress rate of T ′. Node similarity would be calculated
based on normalized task progress rates. The basic idea is
the execution time of a task would be predicted based on
the information of peer tasks running on only similar nodes.
We plan to investigate it in more detail in future work.

D. Implementation
To utilize residual resources, the parallelism of running

tasks needs to be increased. Multithreading technique has
been adopted by us to fully exploit the capability of modern
servers. In Hadoop, each task is run in a separate process to
isolate its execution environment. Fig. 2 shows an example.
There are two slave nodes each of which has 5 cores.
One core is dedicated to running various Hadoop daemons.
Fig. 2 (a) shows an instant state of a MapReduce system.
Each node has 4 slots among which 2 slots are idle. For
node A, slots A1 and A2 are occupied while slots A3

and A4 are idle. In Hadoop, each task process only runs
one thread to process data even if there are lightly-utilized
cores, IO subsystems or network resources. So the resources
corresponding to slots A3 and A4 are left idle. Resource
stealing starts multiple threads within a task process that
process input data in parallel. In Fig. 2 (b), one extra thread
(marked in black) is created for both A1 and A2, and there
are four threads total after applying resource stealing on
node A. Each thread can be scheduled to an individual core.
Task manager periodically adjusts the number of threads
based on the latest system state.
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Figure 2. An example of native Hadoop scheduling and resource stealing

Resource stealing and BASE are transparent to end users.
Regular MapReduce applications can be run directly without
any modification. Additional configuration parameters are
added to allow administrators to tune various aspects of
our improvements. For example, administrators can en-
able/disable resource stealing and/or BASE, and change the
allocation policy of residual resources.

Although our implementation is based on Hadoop, our
algorithms are not specific to Hadoop and can be applied
to other systems as well that adopt resource “partition” and
speculative execution.

IV. EXPERIMENTS

Instead of directly measuring resource utilization (e.g.
CPU usage), we measure user-perceivable job execution time
which indirectly reflects the improvement or deterioration
of resource utilization. We adopt the trace-based workload
used by other MapReduce papers [20][23][24] in addition
to some real applications. Compute-, IO- and network-
intensive workload is used in our tests below. The results
are applicable to not only those tested applications per se
but also other applications of the same types.

We ran experiments on FutureGrid Hotel cluster which
is homogeneous in both hardware and software. A 33-node
Hadoop system was deployed among which 1 node was a
dedicated master node and the other 32 nodes were slave
nodes. Each node has 8 cores, 23 GB memory, and 1 local
hard drive. The network is Gigabit Ethernet. According to
the best practice that the number of slots should be between
1x and 2x the number of cores, each node was configured
to host 7 map slots and 7 reduce slots. So there were 224
map slots and 224 reduce slots total. HDFS block size was
set to 258 MB because this improved performance.

A. Results for Map-Mostly Compute-Intensive Workload
According to the study in [18], a large portion of MapRe-

duce jobs (over 71%) are map-only. In this section, we ran
two map-mostly applications: ts-map and PSA-SWG.
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(c) Reduction of NBST‡ with BASE(%)

Figure 3. Results for ts-map (‡NBST: Non-Beneficial Speculative Tasks)

1) ts-map: Firstly, we adopted the text extraction applica-
tion included in Hive benchmark [23] which was adopted by
Zaharia et al’s delay scheduling as well [20]. The benchmark
itself is based on Pavlo et al’s benchmark that compares
MapReduce and parallel SQL database management systems
[24]. The text extraction job is IO-intensive and termed
ts. We modified it by applying a compute-intensive User
Defined Function (UDF) to each input record in addition
to the original text extraction operation, which made it
run much longer. This strategy was also used by delay
scheduling [20]. This modified version of ts is compute-
intensive and termed ts-map by us. It does not have a reduce
phase so that we can eliminate the impact of shuffling and
merging and exactly measure the effectiveness of resource
stealing for map-only jobs. In our tests, only 0.01% of
input records are extracted. Each map task processed 256
MB text data and was tuned to run approximately for 5
minutes to simulate the interactive job types in Google’s
MapReduce [2], which was also adopted by Zaharia et al.
to test their scheduling algorithm LATE [9]. Multiple ts-
map jobs were run sequentially with the size of input data
varied between 14 GB, 28 GB, 42 GB, and 50.5 GB. The
corresponding numbers of map tasks were 56, 112, 168,
and 202 respectively, which yielded system utilization 25%,
50%, 75% and 90%.

ts-map without BASE: We ran ts-map without BASE and
show job run time in Fig. 3 (a). Run time is not significantly
influenced by workload for native Hadoop, which means
that processing 14GB, 28GB, 42GB, and 50.5GB data takes
similar amounts of time. The reason is resource usage is
proportional to the number of tasks and residual resources
are not utilized at all. Resource stealing shortens run time by
58%, 29%, 17%, and 5% respectively for policy Even. The
lower the workload is, the more resource stealing outper-
forms native Hadoop. So the performance benefit of resource
stealing is negatively related to system workload, which
matches our expectation well. We also calculated the average
processing time per GB data by dividing job run time by
data size. Increasing workload can drastically improve the
efficiency for native Hadoop, while it approximately keeps
invariant for resource stealing. Different allocation policies
exhibit different performance. Overall, STLM and LTLM
perform the worst and LTM performs well for all tests,
which implies that it benefits to have global knowledge of

job execution. When the workload gets relative high (e.g.
90%), the performance difference becomes smaller.

In our setup, data blocks in HDFS were randomly placed
on nodes with the default block placement strategy. Data
locality aware scheduling in Hadoop co-locates compute and
data with best efforts. As a result, map tasks were evenly
distributed among all slave nodes approximately so that each
node ran a similar number of tasks. That is beneficial to
resource stealing because its gain is not substantial if the
resources of a node are heavily loaded already (i.e. there
are no resources to steal).

ts-map with BASE: We ran the same tests as above
except BASE was enabled and present results in Fig. 3
(b). The plot has similar characteristics to Fig. 3 (a) in
that native Hadoop performs the worst and the performance
superiority of resource stealing decreases with increasing
sytem workload. By comparing 3 (b) and 3 (a), we observe
that BASE slightly shortens run time. LTM again yields the
best performance.

For the cases where BASE is disabled and enabled, we
calculated the percent of non-beneficial speculative tasks
eliminated by BASE and show the result in Fig. 3 (c).
BASE drastically eliminates the launches of non-beneficial
speculative tasks. For workload 75% and 90%, almost all of
them are removed. LTM policy performs well constantly.

2) Pairwise Sequence Alignment(PSA) with Smith-
Waterman-Gotoh Algorithm (SWG): SWG is a well known
algorithm for performing local sequence alignment [25]. We
ran our PSA-SWG implementation, which aligns all pairs of
input sequences, in Hadoop with 16S rRNA sequences from
the NCBI database. The number of processed sequences was
set to 4676, 6608, 8064, and 8888. Input sequences were
partitioned in a way that balances load and makes each
job run for between 20 and 25 minutes with native Hadoop
scheduling. Job run time is shown in Fig. 4 (a), from which
similar observations as ts-map tests can be made. Resource
stealing speeds up job execution by 2.45x, 1.53x, 1.15x, and
1.03x respectively. The impact of BASE on job run time is
negligible. Fig. 4 (b) shows the percent of non-beneficial
speculative tasks eliminated by BASE compared to native
Hadoop without BASE. Applying BASE alone achieves
10%–20% improvement while applying BASE and resource
stealing simultaneously eliminates all non-beneficial specu-
lative tasks. With dynamic parallelism adjustment, resource
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Figure 4. Results for PSA-SWG
stealing can smooth out the intermittent fluctuation of task
execution and thus make BASE able to predict run time
more accurately.

We conclude that BASE reduces the number of non-
beneficial speculative tasks significantly without sacrificing
run time. Because a fewer number of speculative tasks are
launched, the saved resources can be allocated to regular
tasks for better efficiency. It also implies that the estimation
of run time is approximately accurate so that BASE rarely
removes the runs of beneficial speculative tasks.

B. Results for Compute-Intensive Workload with Stragglers
In this experiment, background load is generated to slow

down some nodes and simulate straggler nodes. We de-
veloped a load generator that can generate user-specified
load of computation, network and disk IO. We ran multiple
CPU-hogging threads yielding high core utilization, and IO-
intensive threads reading/writing data continuously from/to
local disks. The background load significantly slowed down
the nodes without rendering them thoroughly unresponsive.
We ran ts-map jobs that utilize 75% of all map slots and
thus 42GB data was processed total in each run.

Firstly, two slave nodes were slowed down and job run
time is shown in Fig. 5 (a). Again resource stealing improves
performance over native Hadoop significantly no matter
which resource allocation policy is used. LTM performs well
stably for the cases with and without BASE. Fig. 5(b) shows
BASE can save runs of nearly all unnecessary speculative
tasks, which implies the estimation of run time is accurate
when only a small number of slave nodes are stragglers.

Secondly, four slave nodes were slowed down. Fig. 5 (c)
shows job run time. The jobs ran longer compared with
the previous test because more map tasks were impacted.
Resource stealing is still effective to speed up job execution.
Policies LTM, Even, and LTLM yield the best performance.
Fig. 5 (d) shows BASE can eliminate 20%–50% of non-
beneficial speculative tasks. Compared with the previous
case, BASE becomes less effective. It indicates our estima-
tion of run time gets inaccurate as more straggler nodes incur
larger variation of task execution. To make the estimation of
run time adaptive to the change of system state is part of
our future work.

C. Results for Reduce-Mostly Jobs
The trace analyzed in [18] shows 9% jobs are reduce-

mostly. In this test, we experimented with two reduce-mostly

applications: ts-reduce and matrix multiplication.
ts-reduce: Firstly, we modified the original text extraction

application by plugging a compute-intensive UDF in reduce
operation. The new application is called ts-reduce. The
numbers of map and reduce tasks were set according to the
fact that most MapReduce jobs tend to have significantly
lesser reduce tasks than map tasks. For resource stealing,
only policy LTM was evaluated because it performs among
the best based on the results above. Each job had 101
map tasks and the number of reduce tasks was varied
between 32 and 64. Each job ran for 5-10 minutes ap-
proximately. Job run time is shown in Fig. 6 (a). Resource
stealing substantially shortens job run time by 71% and
44% respectively. Resource stealing thoroughly eliminated
non-beneficial speculative tasks. When each job contained
32 reduce tasks, they were well spread out so that each
node ran one reduce task at most on average. For each
reduce task, resource stealing created 6 new reduce tasks
(note the number of reduce slots is 7 on each node) to
run in parallel, which should yield 7x optimal speedup. In
reality, we only got 4x speedup approximately because of
additional overhead. Reduce threads contend for the same
input stream and only one thread can read at any time.
To alleviate the issue, in our implementation each thread
locks the input stream, copies next key/values tuple to its
local buffer, unlocks the input stream and processes the data
in local buffer without interfering with other threads. But
this approach incurs extra memory copying. In addition,
reduce threads belonging to the same task contend for
the same output stream as well. To investigate advanced
techniques to mitigate contention further is among future
work. We also measured the number of speculative tasks.
The results are not shown because of space limit. BASE
shortens job execution marginally, but reduces the number
of non-beneficial speculative tasks by up to 90% compared
to native Hadoop.

Matrix multiplication: Li et al. used matrix multipli-
cation to evaluate Dryad in [26]. We implemented it in
Hadoop using the simple three-loop approach and call it
mm. Input matrices were stored in HDFS. Map tasks only
split the input matrices into smaller blocks and thus do not
run real computation. Each reduce task calculates a number
of final output blocks. Most of the work is done by reduce
tasks, which makes mm reduce-mostly. The distribution of
real matrix multiplication operations among reduce tasks
is controlled by a partitioner. Our initial tests showed the
default hash partitioner yielded substantial workload skew
and resulted in severe load imbalancing. So a custom par-
titioner has been implemented by us to make total work
distributed more evenly. We ran two tests in which the
size of each block was 750 x 750. In the first test, the
number of reduce tasks was set to 10 and the size of each
input matrix was 11.25k x 11.25k, so each matrix was split
into 225 blocks ((11.25k/750)2 = 225) and each mm run
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Figure 5. Results for ts-map with straggler nodes. There are two straggler nodes for (a) and (b), and four straggler nodes for (c) and (d)

read 20 GB data total from HDFS. In the second test,
each job ran 112 reduce tasks and the size of each input
matrix was 24.75k x 24.75k, so each matrix comprised 1089
blocks((24.75k/750)2 = 1089) and each mm run read 210
GB data total. The total number of reduce slots was 224
in the system, so those two tests approximately achieved
utilization 5% and 50% respectively. Fig. 6 (b) shows the
average job run time. Resource stealing yielded 5.4x and 2x
speedup respectively, which results from the opportunistic
exploitation of the processor cores “reserved” for non-
occupied reduce slots.
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Figure 6. Results for reduce-mostly applications

D. Results for Other Workload
Besides compute-intensive applications, we also ran jobs

of other types to comprehensively evaluate our approaches.
Network-Intensive Workload: We wrote a distributed

web crawler mr-wc, whose input is a set of URLs of the
webpages to download. Mr-wc does not have reduce phase;
and its map tasks download web pages and save them into
HDFS. Network is the most critical resource for mr-wc.
Lemur project published a data set containing approximately
500 million unique URLs [27]. We selected a portion of it
randomly as the input of mr-wc. If most pages downloaded
by each task are hosted by the same server, the variation
of server response time can result in the severe skew of
crawling tasks. To mitigate the issue, we shuffled the input
URLs so that each task fetched pages from different domains
and workload was better balanced. The same testbed as
above was used. In our tests, each map task downloaded
2000 web pages and the total number of download pages
was 112k, 224k, 336k and 404k, which means the number
of map tasks was 56, 112, 168 and 202 respectively. So the
system workload was 25%, 50%, 75% and 90% respectively.
Fig. 7 shows job run time. For native Hadoop, the run time
of mr-wc is not significantly impacted by the workload,
which implies spare resources cannot be utilized. In contrast,
resource stealing expands the used resources of running tasks

by creating more threads to download webpages in parallel.
Run time is shortened drastically by 66%, 37%, 24% and
15% respectively.

For above tests, speculative execution was disabled be-
cause our additional tests showed it deteriorates performance
mostly. The efficiency of webpage crawling depends heavily
on the response time of the servers where webpages are
hosted, which ranges from milliseconds to seconds. Under
this circumstance, running speculative tasks is not helpful
because the efficiency variation of tasks is not caused by
the system itself.
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Figure 7. Results for network-intensive workload mr-wc

IO-Intensive Workload: In this test, applications word-
count and text extraction ts are used. Application ts has
been described above. Wordcount counts the number of word
occurrences in input text. Again each map task processed
256MB text and the number of map tasks was varied. Fig.
8 shows the results. For both applications, as the number of
map tasks increases, job run time increases as well and paral-
lel efficiency deteriorates, which is caused by the increasing
resource contention. However, with more data processed, the
processing throughput (the amount of processed data per
unit of time) is improved significantly, which results from
higher task-level parallelism. Resource stealing performs
only slightly better than native Hadoop scheduling, although
resource stealing achieves higher parallelism within each
task. It is caused by a limitation of Hadoop implementation.
In map tasks, each map operation processes one line of
text and is invoked repeatedly. Although resource stealing
enables Hadoop to run more map operations in parallel, these
threads share the same underlying input reader and output
writer (to comply with Hadoop design). This incurs substan-
tial contention among threads because the computation time
of each map operation is short and synchronization is the
performance barrier. As a result, the overhead is comparable
to the benefit of higher concurrency brought by resource
stealing. This inefficiency is not intrinsic to our approach and
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Figure 8. Results for IO-intensive workload

mainly pertains to Hadoop design. Theoretically moderate
increase of I/O parallelism can exploit the interleaving of
computation and data I/O and improve overall throughput.

V. CONCLUSIONS

The goal of our work is to improve resource utilization in
MapReduce. We present resource stealing to dynamically
re-allocate residual resources to running tasks with the
promise that they will be handed back whenever required by
newly assigned tasks. It can be applied in conjunction with
existing job schedulers smoothly because of its transparency
to central Hadoop scheduling. In addition, we have analyzed
the mechanism adopted by Hadoop to trigger speculative
execution, discussed its inefficiency and proposed Benefit
Aware Speculative Execution which starts speculative tasks
based on the estimated benefit. Our conducted experiments
demonstrate their effectiveness. Resource stealing yields
substantial performance improvement for compute-intensive
and network-intensive applications and BASE effectively
eliminates a large portion of unnecessary runs of speculative
tasks. For IO-intensive applications, performance improve-
ment is not substantial, which is caused by accessing con-
tention in Hadoop framework. In future, we will investigate
lock-free data structures and algorithms to mitigate the issue.
Currently we assume all jobs have the same priority and thus
treat all tasks equally. We plan to integrate job prioritization
to make our algorithms comply with the fair sharing policies.
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