
Traffic Flow Forecasting Based on Combination of Multidimensional Scaling 
and SVM 

 
Zhanquan Suna, Geoffrey Foxb 

a. Key Laboratory for Computer Network of Shandong Province, Shandong Computer Science Center 
(19 Keyuan Road, Jinan, Shandong, 250014, China, sunzhq@keylab.net) 

b. School of Informatics and Computing, Pervasive Technology Institute, Indiana University Bloomington 
(2719 E 10th St, Bloomington, Indiana, 47408, USA, gcfexchange@gmail.com) 

 
Abstract: Traffic flow forecasting is a popular research topic of Intelligent Transportation Systems (ITS). With the 
development of information technology, lots of history electronic traffic flow data are collected. How to take full use of 
the history traffic flow data to improve the traffic flow forecasting precision is an important issue. More history data are 
considered, more computation cost should be taken. In traffic flow forecasting, many traffic parameters can be chosen 
to forecast traffic flow. Traffic flow forecasting is a real-time problem, how to improve the computation speed is a very 
important problem. Feature extraction is an efficient means to improve computation speed. Some feature extraction 
methods have been proposed, such as PCA, SOM network, and Multidimensional Scaling (MDS) and so on. But PCA 
can only measure the linear correlation between variables. The computation cost of SOM network is very expensive. In 
this paper, MDS is used to decrease the dimension of traffic parameters, interpolation MDS is used to increase 
computation speed. It is combined with nonlinear regression Support Vector Machines (SVM) to forecast traffic flow. 
The efficiency of the method is illustrated through analyzing the traffic data of Jinan urban transportation. 
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1. Introduction 
 

Short-time traffic flow forecasting is a popular 
research topic of Intelligent Transportation Systems 
(ITS). Correct traffic flow forecasting is the precondition 
of real-time traffic signal control, traffic assignment, 
route guidance, automatic guidance, and accident 
detection. The study of traffic flow forecasting is very 
significant in ITS. Many scholars have been studying on 
the topic and many forecasting models have been 
developed. Commonly used methods include average 
method, ARMA, linear regression, nonparametric 
regression, and neural networks [1-3]. The forecasting 
precisions of these methods usually can’t meet with the 
practical requirement. Support Vector Machines (SVM) 
is proposed by V. Vapnik in 1995[4]. It is a network 
model that is based on the principle of structure risk 
minimization and VC dimension theory. It can resolve 
small sample, nonlinear, high dimension, and local 
minimum problems efficiently [5]. SVM is mainly used 
to resolve classification and regression problems. 
Nonlinear regression SVM has been used to forecast 
traffic flow and obtained good results [6]. 

In practical, there are many parameters are available 
for the traffic flow forecasting. Many forecasting 
methods are real-time. Too many input parameters will 
decrease the real-time performance. In current traffic 
flowing forecasting research, mostly concentrate on 
short term history traffic flow data. Lots of history data 
are not taken into consideration because the computation 
cost is expensive. For taking full use of history traffic 
flow data and improving the computation speed, feature 

extraction is an efficient means. It can decrease the 
dimension of input and decrease the computation cost 
efficiently. Many feature extraction methods have been 
proposed, such as Principal Component Analysis (PCA), 
Self Organization Map (SOM) network, and so on[7-8]. 
Multidimentional Scaling (MDS) is a kind of Graphical 
representations method of multivariate data[9]. It is 
widely used in research and applications of many 
disciplines. The method is based on techniques of 
representing a set of observations by a set of points in a 
low-dimensional real (usually) Euclidean vector space, 
so that observations that are similar to one another are 
represented by points that are close together. It is a 
nonlinear dimension reduction method. But the 
computation complexity is O(n^2) and memory 
requirement is O(n^2). With the increase of sample size, 
the computation cost of MDS increase sharply. For 
improving the computation speed, interpolation MDS are 
introduced in reference [10]. It is used to extract feature 
from large scale traffic flow data. Nonlinear SVM is 
used to forecast traffic flow. 

The following of the paper is organized as follows. 
Interpolation MDS method is introduced in part 2. 
Nonlinear SVM is introduced in part 3. Traffic flow 
forecasting procedure based on MDS and nonlinear 
SVM is introduced in part 4. A practical example is 
analyzed with the proposed model in part 5. At last some 
conclusions are summarized. 
2. Interpolation MDS 
 
2.1 Multidimensional Scaling 
 



   MDS is a non-linear optimization approach 
constructing a lower dimensional mapping of high 
dimensional data with respect to the given proximity 
information based on objective functions. It is an 
efficient feature extraction method. The method can be 
described as follows. 
    Given a collection of n  objects D =
{x1, x2,⋯ , xn}, xi ∈ RN(i = 1,2,⋯ , n)  on which a 
distance function is defined as δi,j, the pairwise distance 
matrix of the n objects can be denoted by 

∆≔ �

δ1,1 δ1,2
δ2,1 δ2,2

⋯
δ1,n
δ2,n

⋮ ⋱ ⋮
δn,1 δn,2 ⋯ δn,n

� 

where  δi,j  is the distance between xi  and xj . Euclidean 
distance is often adopted. 
   The goal of MDS is, given Δ, to find  n  vectors 
p1,⋯ , pn ∈ RL(L ≤ N) to minimization the STRESS or 
SSTRESS. The definition of STRESS and SSTRESS are 
as follows. 

σ(P) = ∑ wi,j�di,j(P) − δi,j�
2

i<j                         (1) 
σ2(P) = ∑ wi,j�(di,j(P))2 − δi,j2 �

2
i<j                  (2) 

where 1 ≤ i < j ≤ n, 𝑤𝑤𝑖𝑖,𝑗𝑗  is a weight value (𝑤𝑤𝑖𝑖,𝑗𝑗 > 0), 
𝑑𝑑𝑖𝑖,𝑗𝑗(𝑃𝑃) is a Euclidean distance between mapping results 
of 𝒑𝒑𝑖𝑖  and 𝒑𝒑𝑗𝑗 . It may be a metric or arbitrary distance 
function. In other words, MDS attempts to find an 
embedding from the 𝑛𝑛  objects into 𝑅𝑅 𝐿𝐿 such that 
distances are preserved.  
2.2 Interpolation Multidimensional Scaling 
 
   One of the main limitations of most MDS applications 
is that it requires 𝑂𝑂(𝑛𝑛2)  memory as well as O(n2) 
computation. It is difficult to process MDS with large 
scale data set because of the limitation of memory 
limitation. Interpolation is a suitable solution for large 
scale MDS problems. The process can be summarized as 
follows. 
   Given n samples data 𝐷𝐷 = {𝒙𝒙1,𝒙𝒙2,⋯ ,𝒙𝒙𝑛𝑛},𝒙𝒙𝑖𝑖 ∈
𝑅𝑅𝑁𝑁(𝑖𝑖 = 1,2,⋯ ,𝑛𝑛)  in N dimension space, m samples 
𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 = {𝒙𝒙1,𝒙𝒙2,⋯ ,𝒙𝒙𝑚𝑚},   are selected to be mapped into 
L dimension space 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 = {𝒑𝒑1,𝒑𝒑2,⋯ ,𝒑𝒑𝑚𝑚}  with MDS. 
The other samples 𝐷𝐷𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟 = {𝒙𝒙1,𝒙𝒙2,⋯ ,𝒙𝒙𝑛𝑛−𝑚𝑚},  will be 
mapped into L dimension space 𝑃𝑃𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟 =
{𝒑𝒑1,𝒑𝒑2,⋯ ,𝒑𝒑𝑛𝑛−𝑚𝑚}  with interpolation method. The 
computation cost and memory of interpolation MDS is 
only 𝑂𝑂(𝑛𝑛) . It can improve the computing speed 
markedly. 
   Select one sample data 𝒙𝒙 ∈ 𝐷𝐷𝑟𝑟𝑠𝑠𝑠𝑠𝑟𝑟 , calculate the 
distance 𝛿𝛿𝑖𝑖𝑖𝑖  between the sample data 𝒙𝒙  and the pre-
mapped samples 𝒙𝒙𝒊𝒊 ∈ 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖 = 1,2,⋯ ,𝑚𝑚). Select the 𝑘𝑘 
nearest neighbors 𝑄𝑄 = {𝑞𝑞1,𝑞𝑞2,⋯ , 𝑞𝑞𝑘𝑘}, where 𝒒𝒒𝑖𝑖 ∈ 𝐷𝐷𝑠𝑠𝑠𝑠𝑠𝑠 , 
who have the minimum distance values. 
   After data set 𝑄𝑄 being selected, the mapped value of 
the input sample is calculated through minimizing the 
following equations as similar as normal MDS problem 
with 𝑘𝑘 + 1 points. 

    𝜎𝜎(𝑋𝑋) = ∑ �𝑑𝑑𝑖𝑖,𝑗𝑗(𝑃𝑃) − 𝜹𝜹𝒊𝒊,𝒋𝒋�
2

𝑖𝑖<𝑗𝑗 = 𝐶𝐶 + ∑ 𝑑𝑑𝑖𝑖𝑖𝑖2𝑘𝑘
𝑖𝑖=1 −

2∑ 𝑑𝑑𝑖𝑖𝑖𝑖𝛿𝛿𝑖𝑖𝑖𝑖𝑘𝑘
𝑖𝑖=1                                                                  (3) 

   In the optimization problems, only the position of the 
mapping position of input sample is variable. According 
to reference [10], the solution to the optimization 
problem can be obtained as   

𝑥𝑥[𝑟𝑟] = 𝒑𝒑� + 1
𝑘𝑘
∑ 𝛿𝛿𝑖𝑖𝑖𝑖

𝑑𝑑𝑖𝑖𝑖𝑖
�𝑥𝑥[𝑟𝑟−1] − 𝒑𝒑𝑖𝑖�𝑘𝑘

𝑖𝑖=1                        (4) 

where 𝑑𝑑𝑖𝑖𝑖𝑖 = �𝒑𝒑𝑖𝑖 − 𝑥𝑥[𝑟𝑟−1]� and 𝒑𝒑� is the average of k pre-
mapped results. The equation can be solved through 
iteration. The iteration will stop when the difference 
between two iterations is less than the prescribed 
threshold values. The difference between two iterations 
is denoted by 

𝛿𝛿 = (�𝑖𝑖[𝑡𝑡]−𝑖𝑖[𝑡𝑡−1]�)
�𝑖𝑖[𝑡𝑡−1]�

                                                  (5) 
3. Support Vector Machines 
 
   SVM first maps the input points into a high-
dimensional feature space with a nonlinear mapping 
function Φ  and then carry through linear classification 
or regression in the high-dimensional feature space. The 
linear regression in high-dimension feature space 
corresponds to the nonlinear classification or regression 
in low-dimensional input space. The general SVM can 
be described as follows. 
   Let l  training samples be )},(,),,{( 11 ll yxyxT = , 

where n
Xi Rx =Ω∈ , Ry Yi =Ω∈ , li ,,1= . 

Nonlinear mapping function is )()(),( jiji xxxxk Φ⋅Φ= . 
Nonlinear regression SVM can be implemented through 
solving the following equations. 

    min
𝛼𝛼∗∈𝑅𝑅2𝑙𝑙

1
2
� (𝛼𝛼𝑖𝑖∗ − 𝛼𝛼𝑖𝑖)�𝛼𝛼𝑗𝑗∗ − 𝛼𝛼𝑗𝑗�𝑘𝑘�𝑥𝑥𝑖𝑖 . 𝑥𝑥𝑗𝑗�
𝑠𝑠

𝑖𝑖,𝑗𝑗=1

 

+𝜀𝜀�(𝛼𝛼𝑖𝑖∗ + 𝛼𝛼𝑖𝑖)
𝑠𝑠

𝑖𝑖=1

−�𝑦𝑦𝑖𝑖(𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)
𝑠𝑠

𝑖𝑖=1

 

𝑠𝑠. 𝑡𝑡.∑ (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗)𝑠𝑠
𝑖𝑖=1 = 0                                             (6) 

    𝛼𝛼𝑖𝑖 ,𝛼𝛼𝑖𝑖∗ ≥ 0     ∀𝑖𝑖 = 1,⋯ , l 
Through optimization, optimum solution 

),,,,( **
11

(*)
ll ααααα = can be solved. 

   Select the positive sub-vector 0>jα  of α  or the 

positive sub-vector *α  of 0* >jα  and calculate the 
parameter 

εαα −−−= ∑
=

l

i
jiiij xxKyb

1

* ),()(                      (7) 

   After getting the optimum parameters, the decision 
function can be denoted as 

∑
=

+⋅−=
l

i
iii bxxkxf

1

* )()()( αα                          (8)
 

   It is very important to choose appropriate kernel 
function of SVM. The kernel function must satisfy the 
Mercer condition. At present, many kernel function 

http://en.wikipedia.org/wiki/Embedding


model have been developed. Commonly used kernel 
functions include 
(1)  linear: 𝐾𝐾�x𝑖𝑖, x𝑗𝑗� = x𝑖𝑖𝑇𝑇x𝑗𝑗      
(2)  polynomial: 𝐾𝐾�x𝑖𝑖, x𝑗𝑗� = �𝛾𝛾x𝑖𝑖𝑇𝑇x𝑗𝑗 + 𝑟𝑟�𝑑𝑑 , 𝛾𝛾 > 0                 
(3)  radial basis function (RBF): 𝐾𝐾�x𝑖𝑖, x𝑗𝑗� =

exp (−𝛾𝛾�x𝑖𝑖 − x𝑗𝑗�
2), 𝛾𝛾 > 0 

(4)  sigmoid: 𝐾𝐾�x𝑖𝑖, x𝑗𝑗� = exp (−𝛾𝛾�x𝑖𝑖 − x𝑗𝑗�
2), 𝛾𝛾 > 0  

Here, 𝛾𝛾, 𝑟𝑟, 𝑎𝑎𝑛𝑛𝑑𝑑 𝑑𝑑 are kernel parameters. 
4  Traffic Flow Forecasting 
 
   In intelligent transportation system, many traffic flow 
parameters are useful in identifying the traffic state, such 
as speed, traffic flow volume, and time occupancy and 
so on. Short term forecasting of the parameters is the 
precondition of providing traffic information services. In 
the forecasting of the traffic flow parameters, many 
traffic flow data can be used, such as the previous 
sampling data, history cycle data and so on. The 
included data should be prescribed previously according 
to practical requirement and experience. Traffic flow 
forecasting model is built according to history traffic 
flow data. Training samples can be generated according 
to the model. Sample data are mapped into low 
dimension space with MDS method. Traffic flow data 
are forecasted based the mapped data with SVM. The 
method is summarized as follows. 
   1) Generate samples 
   Firstly, determine the feature vector x =
[x1, x2,⋯ , xN], N is the number of selected traffic flow 
data. Current time traffic flow data to be forecasted is 
denoted by y. Samples can be generated according to the 
model with history traffic flow data.  
   2) Dimension reduction 
   Select some samples and mapped them into low 
dimension space with MDS methods introduced as in 
section 2.1. Prescribe the number k of nearest neighbors. 
The other samples are mapped into low dimensions with 
interpolation method introduced as in section 2.2.  
   3) Traffic flow forecasting with SVM 
   All the mapped samples are divided into two parts. 
One part is used to train nonlinear SVM model. The 
other is used to test the trained model. Some indices can 
be used to evaluate the training model in quantitatively. 
Commonly used are following three indices. 
   (1) Mean absolute percentage error (MAPE) 

𝑀𝑀𝑀𝑀𝑃𝑃𝑀𝑀 =
1
𝑛𝑛
��

𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖
𝑦𝑦𝑖𝑖

�
𝑛𝑛

𝑖𝑖=1

 

   (2) Mean absolute error (MAE) 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�|𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 

   (3) Mean square error (MSE) 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)2
𝑛𝑛

𝑖𝑖=1

 

where n  is the number of test samples, iŷ  is the 
forecasting value, and iy  is the detected value. 
5. Example 
 
5.1 Data Source 

    
   Jinan traffic police branch provides us with traffic flow 
data and video data of Jingshi Road expressway. 
Through the express way, there are about 14 
intersections. The traffic flow data are collected by 
inductance loop vehicle detectors. We select traffic flow 
data of the cross between Jingshi road and Lishan Road 
from June 1, 2007 to July 1, 2007 to study. In the 
intersection, there are four directions. We select the 
direction from west to east. Data collecting equipment is 
loop detectors which can detector three traffic 
parameters, i.e. volume, average speed and occupancy. 
Collecting interval is 5 minutes. There are 53187 traffic 
flow data in total. 
5.2 Generate samples 
 
   Traffic flow parameter value to be forecasted is 
denoted by variable Y . Traffic flow parameter value of 
current cross at previous sampling times are denoted by 
variable vector ),,,(

121 NXXX =X  where 

1,,2,1, NiX i =  denotes previous i  sampling time 
value. Traffic flow parameter value of current cross at 
history times are denoted by variable vector 

),,,(
221 NHHH =H  where 2,,2,1, NiHi =  denotes 

previous i  days’ time value. 𝑿𝑿 = [𝑿𝑿,𝑯𝑯] is taken as the 
feature vector. 
   In this example, N1 = 10 previous sampling time data 
and N2 = 5  history sampling data are prescribed. The 
history cycle is set 1 day. For generating samples, 5 days 
history data should be retained. 51747 samples are 
generated in the end. 
5.3 Dimension reduction 
 
   In this example, 4000 samples are selected to be pre-
mapped into low dimension space. Firstly, calculate the 
distance matrix. Euclidean distance is adopted here. 
Then calculate the mapped vector according to the 
distance matrix with MDS method. The others are 
mapped into low dimension with interpolation MDS 
method. The number of nearest neighbor is set k = 10. 
For comparison, the dimension number is set as 2, 3, and 
5 respectively. 
5.4 Forecasting with SVM 
 
   After selecting the independent variables, we take 
them as the input and variable Y  as the output of SVM 
respectively. We select 31048 samples randomly as the 
training set to train the SVM and 20699 samples as the 
testing set. 
For improving the training precision of SVM, all the 
traffic flow samples and corresponding transformed 



values are scaled to [-1,1]. The normalization is as 
following equation. 

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
2𝑥𝑥 − 𝑥𝑥𝑚𝑚𝑠𝑠𝑖𝑖 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛
𝑥𝑥𝑚𝑚𝑠𝑠𝑖𝑖 − 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛

 

where 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 denotes the scaled values of 𝑥𝑥, 𝑥𝑥𝑚𝑚𝑠𝑠𝑖𝑖 , 𝑥𝑥𝑚𝑚𝑖𝑖𝑛𝑛 
are the maximum and minimum values of 𝑥𝑥 . Scaled 
traffic flow parameters’ values are taken as the input of 
SVM. 
    The computation configuration is as follows. The 
operation OS is Ubuntu Linux. The processor is 3GHz 
Intel Xeon with 8GB RAM. Based on different feature 
dimension number, the training time of SVM is 
compared. For illustrate the efficiency of feature 
extraction, we train the SVM with all feature variables, 
i.e. no feature extraction. The training time based on 2, 
3 ,5 and 15 feature dimensions are listed in table 1, table 
2 and table 3. They corresponds to traffic parameter 
volume, speed and time occupancy respectively. 

Table 1  training time and MDS processing time of volume 
Dimension 

number MDS time Interpolation 
time 

Training 
time 

Total 
computation 

cost 

Support 
vector 

number 
2 7 8 62.416 77.416 30873 
3 8 9 63.419 80.419 30817 
5 18 9 75.206 102.206 30812 

15 N/A N/A 153.091 153.091 30811 
Table 2  training time and MDS processing time of speed 

Dimension 
number MDS time Interpolation 

time 
Training 

time 

Total 
computation 

cost 

Support 
vector 

number 
2 7 8 125.365 140.365 29807 
3 8 9 131.385 148.385 29444 
5 17 9 151.416 177.416 29439 

15 N/A N/A 258.214 258.214 29496 
Table 3  training time and MDS processing time occupancy 

Dimension 
number MDS time Interpolation 

time 
Training 

time 

Total 
computation 

cost 

Support 
vector 

number 
2 5 8 102.999 115.999 30318 
3 7 8 105.195 120.195 30255 
5 15 9 123.943 147.943 30374 

15 N/A N/A 208.591 208.591 30422 
   After training SVM model, the left samples are used to 
test. The test results of traffic parameter volume, speed, 
and occupancy are listed in table 4, table 5 and table 6 
respectively. 

Table 4  forecasting result of Volume  with SVM 
Dimension 
number MAPE MAE MSE 

2 0.3123 38.09 2629.40 
3 0.3099 37.90 2507.73 
5 0.3092 37.32 2394.04 

15 0.2617 34.34 2128.12 
Table 5  forecasting result of speed with SVM 

Dimension 
number MAPE MAE MSE 

2 0.1371 4.60 37.40 
3 0.1366 4.51 36.78 
5 0.1352 4.44 35.37 

15 0.1181 3.97 29.93 
Table 6  forecasting result of occupancy with SVM 

Dimension 
number MAPE MAE MSE 

2 0.2512 6.40 76.74 
3 0.2479 6.26 72.89 
5 0.2405 5.98 66.54 

15 0.2063 5.14 54.10 

5.5  Forecasting with common used method 
   For comparison, the samples are analyzed with 
average value and multiple linear regression methods. 
5.5.1  Average value method 
   We take used of previous 15 time point’s traffic flow 
parameters 1521 ,,, XXX   to forecast the current time 
point’s traffic flow parameter Y . The forecasting 
equation is  

     15/)( 1521 XXXY +++=   
   It doesn’t need history data to determine the 
calculation model. The forecasting errors are shown as in 
table 7. 
Table 7  forecasting result of Volume based on average method 

Parameter MAPE MAE MSE 
volume 0.2899 37.53 2477 
speed 0.1423 4.94 40.48 

occupancy 0.3440 7.85 124.89 
5.5.2 Forecasting with multiple linear regression 
   Let variable Y  be dependent variable and 

, be independent variables. The regression 
equation is 
      
31048 samples are used as training samples to determine 
the regression parameters  with minimum least 
square methods. The left 20699 samples are used to test. 
The forecasting errors are shown as in table 8.  

Table 8  forecasting result of occupancy with SVM with 
multiple regression method 

parameter MAPE MAE MSE 
Volume 0.2841 37.10 2366.3 
Speed 0.1346 4.64 35.99 

occupancy 0.2464 6.09 68.16 

5.6 Results analysis 
   The computation cost of training time and MDS 
processing time are shown as in figure 1. From the 
analysis results we can find the computation cost can be 
decreased markedly with the decrease of dimension 
number. It illustrates that feature extraction is efficient in 
traffic flow forecasting. 

 
Figure 1  computation time based on different dimension 

number 
   The test results of different traffic parameters are 
shown as in figure 2, 3 and 4. From the results we can 
found that forecasting precision based on SVM is higher 
than that of classical forecasting methods. Although the 
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forecasting precision based on dimension reduction is 
decreased, it is still higher or similar to that of classical 
method. The affection of the reduction method is not 
marked in the sample is because that the dimension of 
input is not very higher.  

 
Figure 2  MAPE of forecasting results 

 
Figure 3  MAE of forecasting results 

 
Figure 4 MSE of forecasting results 

6  Conclusions 
   How to improve the forecasting precision of traffic 
flow is still an important topic in intelligent 
transportation systems because of the complexity and 
nonlinear character. In this paper, a novel forecasting 
method combining MDS with nonlinear SVM to forecast 
traffic flow data is proposed. The MDS is used to 
decrease the input feature vector dimension. 
Interpolation MDS is used to improve the dimension 
reduction speed. The example analysis results show that 
the proposed method can improve the forecasting speed. 
At the same time, the forecasting precision will not 
decrease markedly. With the development of ITS, the 
input dimension of traffic flow forecasting will increase 

markedly and the scale of traffic flow data will become 
more large. The effective of the method will be more and 
more important to large scale traffic flow forecasting.  
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