Designing Twister2: Efficient Programming Environment Toolkit for Big Data

Supun Kamburugamuve
School of Informatics and Computing
Indiana University
Bloomington, IN, USA
skamburu@indiana.edu

Geoffrey Fox
School of Informatics and Computing
Indiana University
Bloomington, IN, USA
gcf@indiana.edu

ABSTRACT

Data-driven applications are required to adapt to the ever-increasing volume, velocity and veracity of data generated by a variety of sources including the Web and Internet of Things devices. At the same time, an event-driven computational paradigm is emerging as the core of modern systems designed for both database queries, data analytics and on-demand applications. MapReduce has been generalized to Map Collective and shown to be very effective in machine learning. However one often uses a dataflow computing model, which has been adopted by most major big data processing runtimes. The HPC community has also developed several asynchronous many tasks (AMT) systems according to the dataflow model. From a different point of view, the services community is moving to an increasingly event-driven model where (micro)services are composed of small functions driven by events in the form of Function as a Service (Faas) and serverless computing. Such designs allow the applications to scale quickly as well as be cost effective in cloud environments.

An event-driven runtime designed for data processing consists of well-understood components such as communication, scheduling, and fault tolerance. One can make different design decisions for these components that will determine the type of applications a system can support efficiently. We find that modern systems are designed in a monolithic approach with a fixed set of choices that cannot be changed easily afterwards. Because of these design choices their functionality is limited to specific sets of applications. In this paper we study existing systems (candidate event-driven runtimes), the design choices they have made for each component, and how this affects the type of applications they can support. Further we propose a loosely coupled component-based approach for designing a big data toolkit where each component can have different implementations to support various applications. We believe such a polymorphic design would allow services and data analytics to be integrated seamlessly and expand from edge to cloud to high performance computing environments.

1. INTRODUCTION

Big data has been characterized by the ever-increasing velocity, volume and veracity of the data generated from various sources, ranging from web users to Internet of Things devices to large scientific equipment. The data have to be processed as individual streams and analyzed collectively both in streaming and batch settings for knowledge discovery with both database queries and sophisticated machine learning.

These applications need to run as services in cloud environments as well as traditional high performance clusters. With the proliferation of cloud-based systems and Internet of Things, fog computing [12] is adding another dimension to these applications where part of the processing has to occur near the devices.

Parallel and distributed computing is essential to process big data owing to the data being naturally distributed and processing often requiring high performance in compute, communicate and I/O arenas. Over the years, the High Performance Computing (HPC) community has developed frameworks such as message passing interface (MPI) to execute computationally intensive parallel applications efficiently. The HPC applications target high performance hardware, including low latency networks due to the scale of the applications and the required tight synchronous parallel operations. Big data applications have been developed targeting commodity hardware with Ethernet connections seen in the cloud. Because of this, they are more suitable for executing asynchronous parallel applications with high computation to communication ratios. Lately we have observed that more capable hardware comparable to HPC clusters is being added to modern clouds due to increasing demand for cloud applications in deep learning and machine learning. These trends suggest that HPC and cloud are merging, and we need frameworks that combine the capabilities of both big data and HPC frameworks.

There are many properties of data applications that influence the design of those frameworks developed to process them. There are many application classes including database queries, management, and data analytics from complex machine learning to pleasingly parallel event processing. Common issues include that the data can be too big to fit into the memory of even a large cluster. Another important aspect is that it is impractical to always expect a balanced data set from the processing standpoint across the nodes. This follows from the fact that initial data in raw form are usually not load balanced and often require too much time and disk space to balance the data. Also the batch data processing is not enough as much data is streamed and needs to be processed online with reasonable time constraints before being stored to disk. Finally the data may be varied and have processing time that varies between data points and across iterations of algorithms.

Even though MPI is designed as a generic messaging framework, a developer has to focus on file access, with disks in case of insufficient memory and using mostly send/receive operations to develop higher level communication operations.
in order to express communication in a big data application. Adding to this mix is the increasing complexity of hardware, with the explosion of many-core and multi-core processors having different memory hierarchies. It is becoming burdensome to develop efficient applications on these new architectures using the low-level capabilities provided by MPI. Meanwhile, the success of Harp [62] has highlighted the importance of the Map-Collective computing paradigm.

The dataflow [31] computation model has been presented as a way to hide some of the system level details from the user in developing parallel applications. With dataflow, an application is represented as a graph with nodes doing computations and edges indicating communications between the nodes. A computation at a node is activated when it receives events through its inputs. A well-designed dataflow framework hides the low-level details such as communications, concurrency and disk I/O, allowing the developer to focus on the application itself. Every major big data processing system has been developed according to the dataflow model, and the HPC community has also developed asynchronous many tasks (AMT) systems according to the same model. AMT systems mostly focus on computationally intensive applications, and there is ongoing research to make them more efficient and productive. We find that big data systems developed according to a dataflow model are inefficient in computationally intensive applications with tightly synchronized parallel operations [38], while AMT systems are not optimized for data processing.

At the core of the dataflow model is an event-driven architecture where tasks act upon incoming events (messages) and produce output events. In general a task can be viewed as a function activated by an event. The cloud-based services architecture is moving to an increasingly event-driven model for composing services in the form of Function as a Service (FaaS). FaaS is especially appealing to IoT applications where the data is event-based in its natural form. Coupled with microservices and serverless computing, FaaS is driving next generation services in the cloud and can be extended to the edge.

Because of the underlying event-driven nature of both data analytics and message-driven services architecture, we can find many common aspects among the frameworks designed to process data and services. Such architectures can be decomposed into components such as resource provisioning, communication, task scheduling, task execution, data management, fault tolerance mechanisms and user APIs. High-level design choices are available at each of these layers that will determine the type of applications that the framework composed of these layers can support efficiently. We observe that modern systems are designed with fixed sets of design choices at each layer, rendering them only suitable for a narrow set of applications. Because of the common underlying model, it is possible to build each component separately with clear abstractions supporting different design choices. We propose to design and build a polymorphic system by using these components to produce a system according to the requirements of the applications, which we term the toolkit approach. We believe such an approach will allow the system to be configured to support different types of applications efficiently. The authors are actively pursuing a project called Twister2, encompassing the concept of the toolkit. Serverless FaaS is a good approach to building cloud native applications [3, 27] and in this way, Twister2 will be a cloud native framework.

This paper provides the following contributions: 1) A study of different application areas and how a common computation model fits them; 2) Design choices of different systems and how they affect each application area; 3) Presenting a vision of a big data toolkit (Twister2) that can execute applications from each area efficiently. Furthermore the paper provides comparisons of big data and MPI styles of programs to gain better insight into the system requirements.

2. RELATED WORK

Hadoop [58] was the first major open source platform developed to process large amounts of data in parallel. The map-reduce [19] functional model introduced by Hadoop is well understood and adapted for writing distributed pleasingly parallel and one-pass applications. Coupled with Java, it provides a great tool for average programmers to process data in parallel. Soon enough, though, the shortcomings of Hadoop’s simple API and its disk-based communications [21] became apparent, and systems such as Apache Spark [61] and Apache Flink [15] were developed to overcome them. These systems are developed according to the dataflow model and their execution models and APIs closely follow dataflow semantics. Some other examples of batch processing systems include Microsoft Naiad [48], Apache Apex and Google Dataflow [6]. It is interesting to note that even with all its well-known inefficiencies, Hadoop is still being used by many people for data processing. Apart from the batch processing systems mentioned above, there are also streaming systems that can process data in real-time which also adhere to the dataflow model. Some examples of open source streaming systems include Apache Storm [57], Twitter Heron [41], Google Millwheel [5], Apache Samza [53] and Flink [15]. Note that some of the systems process both streaming and batch data in a unified way such as Apache Apex, Google Dataflow, Naiad and Apache Flink. Apache Beam [6] is a project developed to provide a unified API for both batch and streaming pipelines. It acts as a compiler and can translate a program written in its API to a supported batch or streaming runtime. Prior to modern distributed streaming systems, research was done on shared memory streaming systems, including StreamIt [56], Borealis [8], Spade [28] and S4 [50].

There are synergies between HPC and big data systems, and authors [24, 25] among others [36] have expressed the need to enhance these systems by taking ideas from each other. In previous work [22, 23] we have identified the general implications of threads and processes, cache, memory management in NUMA [11], as well as multi-core settings for machine learning algorithms with MPI. DataMPI [42] uses MPI to build Hadoop like system while [7] uses MPI communications in Spark for better performance. A toolkit approach as in Twister2 makes interoperability easier at the usage level as one can change lower level components to fit different environments without changing the programmatic or user interface.

There is an ongoing effort in the HPC community to develop AMT systems for realizing the full potential of multi-core and many-core machines, as well as handling irregular parallel applications in a more robust fashion. It is widely accepted that writing efficient programs with the existing capabilities of MPI is difficult due to the bare minimum capabilities it provides. AMT systems model computations
as dataflow graphs and use shared memory and threading to achieve best performance out of many-core machines. Some examples of such systems are OCR [47], DADuE [13], Charm++ [37], COMPS [17] and HPX [54], all of which focus on dynamic scheduling of the computation graph. A portability API is developed in DARMA [35] to AMT systems to develop applications agnostic to the details of specific systems. They extract the best available performance of multicore and many-core systems while reducing the burden of the user writing such programs using MPI. Prior to this, there was much focus in the HPC community on developing programs that could bring automatic parallelism to users such as Parallel Fortran [14]. Research has been done with MPI to understand the effect of computer noise on collective communication operations [34, 33, 4]. For large computations, computer noise coming from an operating system can play a major role in reducing performance. Asynchronous collective operations can be used to reduce the noise in such situations, but it is not guaranteed to completely eliminate the burden.

In practice, multiple algorithms and data processing applications are combined together in workflows to create complete applications. Systems such as Apache NiFi [1], Kepler [45], and Pegasus [20] were developed for this purpose. The lambda architecture [46] is a dataflow solution to designing such applications in a more tightly coupled way. Amazon Step functions [2] is bringing the workflow to the FaaS and microservices.

3. BIG DATA APPLICATIONS

Here we highlight four types of applications with different processing requirements: 1) Streaming, 2) Data pipelines, 3) Machine learning, and 4) Services. With the explosion of IoT devices and the cloud as a computation platform, fog computing is adding a new dimension to these applications, where part of the processing has to be done near the devices.

Streaming applications work on partial data while batch applications process data stored in disks as a complete set. By definition, streaming data is unlimited in size and hard (and unnecessary) to process as a complete set due to time requirements. Only temporal data sets observed in data windows can be processed at a given time. In order to handle a continuous stream of data, it is necessary to create summaries of the temporal data windows and use them in subsequent processing of the stream. There can be many ways to define data windows, including time-based windows and data count-based windows. In the most extreme case a single data tuple can be considered as the processing granularity.

Data pipelines are primarily used for extract, transform and load (ETL) operations even though they can include steps such as running a complex algorithm. They mostly deal with unstructured data stored in raw form or semi-structured data stored in NoSQL [32] databases. Data pipelines work on arguably the largest data sets possible out of the three types of applications. In most cases, it is not possible to load complete data sets into memory at once and we are required to process data partition by partition. Because the data is unstructured or semi-structured, the processing has to assume unbalanced data for parallel processing. The processing requirements are coarse-grained and pleasingly parallel. Generally we can can consider a data pipeline as an extreme case of a streaming application, where there is no order of data and the streaming windows contain partitions of data.

Machine learning applications execute complex algebraic operations and can be made to run in parallel using synchronized parallel operations. In most cases the data can be load balanced across the workers as curated data is being used. The algorithms can be regular or irregular and may need dynamic load balancing of the computations and data.

Services are moving towards an event-driven model for scalability, efficiency and cost effectiveness in the cloud. The old monolithic services are being replaced by leaner microservices. These microservices are envisioned to be composed of small functions arranged in a workflow [2] or dataflow to achieve the required functionality.

3.1 Dataflow Applications

Parallel computing and distributed computing are two of the general computing paradigms available for doing computations on large numbers of machines. MPI is the de facto standard in HPC for developing parallel applications. It provides a basic but powerful tool to develop parallel applications. An MPI programmer has to consider low-level details such as I/O, memory hierarchy and efficient execution of threads to write a parallel application that scales to large numbers of nodes. With the increasing availability of multicore and many core systems, the burden on the programmer to get the best available performance has increased dramatically [23, 22]. Because of the load imbalance and velocity of the big data applications, an MPI program written with tight synchronized operations across parallel workers may not perform well. An example HPC application is shown in Fig. 1 where a workflow system such as Kepler [45] is used to invoke individual MPI applications. A parallel worker of an MPI program does computations and communications within the same process scope, allowing the program to keep state throughout the execution.

Figure 1: MPI applications arranged in a workflow

Dataflow computing has been around in various forms for a long time. A dataflow program is a computation graph with nodes doing computations and edges passing messages between the nodes. Computation at a node is invoked when its input data dependencies are satisfied. It is a largely accepted truth that dataflow programs are easier to write than MPI-style programs for applications that fit the dataflow model well. In a dataflow program, the user has to program the computations in the nodes and define how the nodes are connected to each other. The dataflow framework handles the details, such as executing the tasks using threads, scheduling, data placement and communications. A carefully designed framework can be tuned to run in different hardware with NUMA boundaries, caches and memory hierarchies.
3.1.1 Dataflow Application APIs

Over the years, there have been numerous languages and different types of APIs developed for creating dataflow applications. Task-based programming and data transformation-based programming are two popular approaches for dataflow parallel applications.

Data transformation APIs are used primarily by big data systems. Data transformation APIs employ a functional programming approach to create the dataflow graph implicitly. In this approach, distributed data is represented in some abstract form and functions are applied to it that return other distributed data. A function takes a user defined operator as an argument and defines the communication between the operators. An example function is a partition function, often called a map in data flow runtimes. A map function works on partitions of a data set and presents the partitioned data to the user defined operators. The output of a user defined operator is connected to another user defined operator by way of another function.

Figure 2: Left: User graph, Right: execution graph of a data flow

Task-based APIs are primarily used by the HPC community with AMT systems. A task-based API usually creates the dataflow tasks at the runtime as the program progresses. A normal program is used to create the tasks, which can use complex control operations such as 'if/else' and 'for' loops to control the dataflow dynamically at runtime.

3.1.2 Execution Graph

The graph executed by the dataflow runtime is termed execution/physical graph. This is created by the framework when the user graph is deployed on the cluster. For example, some user functions may run in larger numbers of nodes depending on the parallelism specified. Also when creating the execution graph, the framework can apply optimization to make some dataflow operations more efficient by reducing data movement and overlapping I/O and computations. Fig. 2 shows the execution graph and the user graph where it runs multiple W operations and S operations in parallel. Each user defined task runs on its own program scope without access to any state regarding other tasks. The only way to communicate between tasks is by messaging, as tasks can run in different nodes.

3.1.3 Data Partitioning

A big data application requires the data to be partitioned in a hierarchical manner due to memory limitations. Fig. 4 shows an example of such partitioning of a large file containing records of data points. The data is first partitioned according to the number of parallel tasks and then each partition is again split into smaller partitions. At every stage of the execution, such smaller examples are loaded into the memory of each worker. This hierarchical partitioning is implicit in streaming applications, as only a small portion of the data is available at a given time.

3.1.4 Hiding Latency

It is widely recognized that computer noise can play a huge role in large-scale parallel jobs that require collective operations. Many researchers have experimented with MPI to reduce performance degradation caused by noise in HPC environments. Such noise is much less compared to what typical cloud environments observe with multiple VMs sharing the same hardware, I/O subsystem and networks. Added to this is the Java JVM noise which most notably comes from garbage collection. The computations in dataflow model are somewhat insulated from the effects of such noise due to the asynchronous nature of the parallel execution. For streaming settings, the data arrives at the parallel nodes with different speeds and processing time requirements. Because of these characteristics, dataflow operations are the most suitable for such environments. Load balancing [49] is a much harder problem in streaming settings where data skew is more common because of the nature of applications.

3.2 Dataflow for Big Data Applications

3.2.1 Streaming Applications

Streaming applications deal with load imbalanced data coming at different rates to parallel workers at any given moment. Having an MPI application processing this data will increase the latency of the individual events. Fig. 3 shows this point with an example where three parallel workers process messages arriving at different speeds and sizes (different processing times). If an MPI collective operation is invoked, it is clear that the collective has to wait until the slowest task finishes, which can vary widely. Also, to handle streams of data with higher frequencies, the tasks of the streaming computation must be executed in different CPUs arranged in pipelines. The dataflow model is a natural fit for such asynchronous processing of chained tasks.

3.2.2 Data Pipelines

Data pipelines can be viewed as a special case of stream-
The services are composed of event-driven functions which can be provisioned and scaled without the user having to know the underlying details of the infrastructure. The functions can be directly exposed to the user for event driven applications or by proxy through microservices for request/response applications. Fig. 6 shows microservices using functions arranged in a workflow and in a dataflow.

4. RUNTIME ARCHITECTURE

The general architecture of a runtime designed for big data is shown in Fig. 7. An application is created using a graph API and an optimizer can be used to make the graph execution efficient. A resource scheduler then allocates the required computing resources to run the processes required, including a master process to manage the job and a set of executors to execute the tasks. There can be additional processes to manage state and gather statistics but these are not essential. The executors use threads to invoke the tasks and manage the communications. The task scheduler can be distributed to run in each executor or be central. The task execution model adopted is a hybrid model where both processes and threads are used. A single executor can host multiple tasks of the execution graph and execute them using threads.

4.1 Communication

Communication is a fundamental requirement of distributed computing because the performance of the applications largely revolves around efficient implementations. The communication patterns that can involve more than two parallel tasks...
are termed collective communications. These patterns as identified by the parallel computing community are available through frameworks such as MPI [26]. Some of the heavily used communication patterns are Broadcast, Gather, Reduce, AllGather and AllReduce [55].

The naive implementation of these communication patterns using point-to-point communication in a straightforward way produces worst-case performance in practical large-scale parallel applications. These communication patterns can be implemented using algorithms that minimize the bandwidth utilization and latency of the operation. In general they are termed collective algorithms.

4.1.1 MPI Collective Operations

In MPI, collective operations and other point-to-point communication operations are driven by control operations. This means the programmer knows exactly when to execute the send or receive functions. Once the program is ready to receive or send data, it can initiate the appropriate operations which will invoke the network functions. The asynchronous communications are slightly different than synchronous operations in the sense that after their invocation, the program can continue to compute while the operation is pending. It is important to note that even with asynchronous operations the user needs to use other operations such as wait/probe to complete the pending operation. MPI has clear standard APIs defined for collective communication patterns and all MPI implementations follow these specifications. The underlying implementation for such a communication pattern can use different algorithms based on factors including message size among others. Significant research has been done on MPI collectives [55, 52] and the current implementations are optimized to an extremely high extent. A comprehensive summary of MPI collective operations and possible algorithms is found in [59].

4.1.2 Dataflow Collective Operations

A communication pattern defines how the links are arranged in the dataflow graph. For instance a single node can broadcast a message to multiple nodes in the graph when they are arranged in a broadcast communication pattern. One of the best examples of a collective operation in dataflow is Reduce. Reduce is the opposite of broadcast operation and multiple nodes link to a single node. The most common dataflow operations include reduce, gather, join [9] and broadcast.

MPI and big data have adopted the same type of collective communications but sometimes they have diverged in supported operations. Table 1 shows some of the collective operations and their availability in MPI and dataflow systems. Even though some MPI collective operations are not present in big data systems, they can be effective. Harp [62] is a machine learning focused collective library and supports the standard MPI collectives as well as some other operations like rotate, push and pull.

It is important to observe that dataflow applications use keyed collective operations. Unlike in MPI where the operations happen in-place, dataflow operations happen between individual tasks. Without keyed operations, it is not possible to direct the outcome of a collective operation to a task.

4.1.3 Optimized Dataflow Collective Operations

Each task in a dataflow graph can only send and receive data via its input and output ports and parallel tasks cannot communicate with each other while performing computations. The authors of this paper propose collective operations as a dataflow graph enrichment, which introduces sub-tasks to the original dataflow graph. Fig 7 and Fig 8 show the naive implementation and our proposed approach for dataflow collective operations. In this approach, the collective operation’s computation is moved to a sub-task under which the collective operation depends. These sub-tasks can be connected to each other according to different data structures like trees and pipes in order to optimize the collective communication. This model preserves the dataflow nature of the application and the collective does not act as a synchronization barrier. The collective operation can run as data becomes available to each individual task, and the effects of unbalanced load and timing issues in MPI are no longer applicable. For collective operations such as broadcast and scatter, the original tasks will be arranged according to data structures required by such operations. We identify several requirements for a dataflow collective algorithm.

1. The communication and the underlying algorithm should be driven by data.
2. The algorithm should be able to use disks when the amount of data is larger than the available memory.
3. The collective communication should work on partitions of data and need to finish only after all the partitions are processed.

4.1.4 High Performance Interconnects

RDMA (Remote Direct Memory Access) is one of the key areas where MPI excels. MPI implementations support a variety of high-performance communication fabrics and performs well compared to Ethernet counterparts. Some RDMA fabrics are developed especially targeting MPI [10]-type applications. Recently there have been many efforts to bring RDMA communications to big data systems, including HDFS [36], Hadoop [43] and Spark [44]. The big data applications are primarily written in Java and RDMA applications are written in C/C++, requiring the integration to go through JNI. Even by passing through additional layers such as JNI, the application still performs reasonably well with RDMA. One of the key forces that drags down the adoption of RDMA fabrics is their low level APIs. Nowadays with unified API libraries such as Libfabric [30] and Photon [39], this is no longer the case.
4.2 Task Scheduling, Threads & Processes

Task scheduling is a key area in which MPI, static and dynamic dataflow systems differ. From an MPI perspective, the task scheduling is straightforward, as MPI only spawns processes to run. It is the responsibility of the user to spawn threads and assign the computations appropriately. This process becomes harder for the MPI programmer when designing applications to run on many-core and multicore systems. Here it is worth noting that the vast majority of programmers are not comfortable with threads, let alone possess the skill to get good performance from them by efficient use of locks.

Static and dynamic scheduling are the two main paradigms used in scheduling tasks.

Static graph scheduling

necessitates the graph be available from the beginning. Because streaming systems require the entire graph to run continuously, this is the only way for such systems to operate. However that does make it harder to express complex applications, especially when containing loops. So this approach is suitable for data parallel applications such as streaming and data pipelines. Because the entire graph is available upon submission, graph optimization techniques can be applied to obtain the execution graph.

Dynamic graph scheduling

allocates and schedules tasks at the run-time as the computation progresses. Because the graph is generated on the fly by a control program, more complex operations can be specified easily. AMT systems are dynamic graph execution systems. Being driven by a normal program, this method is not suitable for streaming data applications.

4.2.1 Streaming & Batch Task Scheduling

Streaming systems need to allocate all the tasks of the graph to run continuously, as well as optimize for latency. To illustrate requirements of stream task scheduling, let us take a hypothetical example where we have 4 computations to execute on a stream of messages with each computation taking \(t \) CPU time. Assume we have 4 CPUs available and the data rate is 1 msg per \(t \) CPU time. If we run all 4 tasks on a single CPU as shown in Fig. 9, it takes \(t \times 4 \) time to process one message and the computation cannot keep up with the stream using 1 CPU. So we need to load balance between the 4 CPUs and the order of the processing is lost unless explicitly programmed with locks to keep the state across 4 CPUs. But it is worth noting that the data remains in a single thread while the processing happens, thus preserving data locality. If we perform the schedule as in Fig. 9 the data locality is lost but the task locality is preserved. [40] describes stream computation scheduling on multicore systems in great detail.

For batch dataflow applications, the tasks are executed as the computation progresses. This means sequential tasks can run on a single CPU as time passes, unlike in a streaming system. Usually a single thread is scheduled to run on a single core and when the tasks become ready to run, this thread can execute them.

4.2.2 Execution of Tasks

As described earlier, a thread-based shared memory model

Table 1: MPI and big data collective operations

<table>
<thead>
<tr>
<th>MPI</th>
<th>Big Data</th>
<th>Algorithms available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduce</td>
<td>Reduce,</td>
<td>Flat/Binary/N-ary/Binomial Tree</td>
</tr>
<tr>
<td></td>
<td>Keyed</td>
<td>Pipelined/Double/Split Binary Tree,</td>
</tr>
<tr>
<td></td>
<td>Reduce</td>
<td>Chain</td>
</tr>
<tr>
<td>AllReduce</td>
<td>N/A</td>
<td>Recursive Doubling, Reduce followed by Broadcast</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ring, Rabenseifner Algorithm, Recursive Doubling, Vector Halving with Distance Doubling</td>
</tr>
<tr>
<td>Broadcast</td>
<td>Broadcast</td>
<td>Flat/Binary Tree</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pipelined/Double/Split Binary Tree,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chain</td>
</tr>
<tr>
<td>Gather</td>
<td>Aggregate, Keyed Aggregate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flat/Binary/N-ary/Binomial Tree</td>
</tr>
<tr>
<td>AllGather</td>
<td>N/A</td>
<td>Recursive Doubling, Reduce followed by Broadcast</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ring, Rabenseifner Algorithm, Recursive Doubling, Vector Halving with Distance Doubling</td>
</tr>
<tr>
<td>Barrier</td>
<td>N/A</td>
<td>Flat/Binary/Binomial Tree</td>
</tr>
<tr>
<td>Scatter</td>
<td>N/A</td>
<td>Flat/Binary Tree</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pipelined/Double/Split Binary Tree,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chain</td>
</tr>
<tr>
<td>N/A</td>
<td>Join</td>
<td>Distributed radix hash, sort merge</td>
</tr>
</tbody>
</table>

Figure 9: Top: Stream task scheduled in 4 CPU in a chain. Bottom: All streaming tasks scheduled in a single CPU.

Static graph scheduling necessitates the graph be available from the beginning. Because streaming systems require the entire graph to run continuously, this is the only way for such systems to operate. However that does make it harder to express complex applications, especially when containing loops. So this approach is suitable for data parallel applications such as streaming and data pipelines. Because the entire graph is available upon submission, graph optimization techniques can be applied to obtain the execution graph.

Dynamic graph scheduling allocates and schedules tasks at the run-time as the computation progresses. Because the graph is generated on the fly by a control program, more complex operations can be specified easily. AMT systems are dynamic graph execution systems. Being driven by a normal program, this method is not suitable for streaming data applications.
is used for executing the tasks of the dataflow. This allows both pipelined execution of tasks and sharing of data through memory. Such pipelined execution of tasks is critical for streaming and data pipeline applications to achieve efficient computations. Because of the large number of cores available in modern systems, it is required to strike a balance between the number of executor processes run in a single node. If fewer executors run in a node, that means a single executor has to cope with larger memory, which can lead to TLB misses and long JVM GC pauses. If more executors are used, the data has to be moved among the processes.

4.3 Data Management & Fault Tolerance

Big data applications work with input data and intermediate data generated through calculations. Apart from this, some state has to be maintained about the computations. In most applications, the input data is not updated and model data is updated frequently. A MPI application delegates the complete data management to the user, allowing her to load data, partition the data and place the data as needed. The same data set can be updated throughout the computations allowing efficient use of memory. Because partitioning and placement of the data is controlled by the user, this approach allows the best possible optimizations.

Even though MPI approach is flexible, users need to work with low level details in order to write such applications. Distributed shared memory architectures have been proposed to ease some of the burdens of data management from the user. Dataflow runtimes can use distributed shared memory [51] (DSM) for data and state management. In general a DSM presents distributed memory as a continuous global address space to the programmer. In such systems, the tasks of the graph are only allowed to work with DSM and no local process level state is kept. This permits the tasks of a dataflow graph to be migrated freely among the nodes. The migration allows the system to recover from node failures and balance load at runtime. The big data community developed distributed DSM technologies like RDD [60] for the same purpose.

RDD and other big data DSMs are a relaxed implementation of general DSM architecture where only coarse-grained operations are allowed. These DSMs are immutable, meaning once created, they cannot be changed. Because tasks of a dataflow application work on partitions of such distributed memory, when a task fails, it can be migrated and recalculated without any side effects. If there are global data dependencies for a partition of such a distributed data set, complete operations may be required to execute again, so checkpointing mechanisms are employed to save state in order to reduce deep recalculations. Because these data sets are immutable, they need to be created every time there are updates to them. This can lead to unnecessary resource consumption for complex iterative applications where the models change frequently during calculations. These DSMs do not allow random access and fine-grained control of data, which can lead to inefficiencies in complex applications [38]. It is worth noting that they work extremely well for pleasingly parallel data pipeline type applications.

Fault tolerance is tightly coupled with how the state is managed. If fine-grained control of state is allowed, the checkpointing has to take these into account. The frequency of such checkpointing is mostly given as an option to the application developer. Such an architecture would require recalculation of large portions of the application in case of a failure depending on the rate of checkpointing.

5. SYSTEMS DESIGN

We have chosen a representative set of runtimes that can support at least one of the application areas comfortably, then studied their strengths and weaknesses related to the design choices they have made. Table 2 shows these systems along with design choices and their applicability to the three application areas. MPI is the default choice for HPC applications. HPX-5 is an AMT system. Both can handle applications with tightly synchronized parallel operations. Spark and Flink are mainly data pipeline systems, with Flink being able to handle streaming computations naively because of its static scheduling. Spark is a dynamic scheduling system and cannot handle low latency streaming computations. Storm/Heron are streaming systems that cannot handle batch applications but are well suited for streaming analytics.
Table 2: Design choices of current runtimes

<table>
<thead>
<tr>
<th>Frameworks</th>
<th>MPI</th>
<th>HPX-5</th>
<th>Spark</th>
<th>Flink</th>
<th>Naiad</th>
<th>Storm/Heron</th>
</tr>
</thead>
<tbody>
<tr>
<td>Task Scheduling</td>
<td>Static</td>
<td>Dynamic</td>
<td>Dynamic</td>
<td>Static</td>
<td>Static</td>
<td>Static</td>
</tr>
<tr>
<td>Execution</td>
<td>User control</td>
<td>Task-based threads</td>
<td>Task-based threads</td>
<td>Task-based threads</td>
<td>Task-based threads</td>
<td>Task-based threads</td>
</tr>
<tr>
<td>API</td>
<td>In-place communication</td>
<td>Task-based</td>
<td>Data transformation</td>
<td>Data transformation</td>
<td>Data transformation</td>
<td>Explicit graph creation</td>
</tr>
<tr>
<td>Optimized通讯</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>RDMA</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>DSM</td>
<td>No</td>
<td>Fine grained</td>
<td>Coarse Grained</td>
<td>Coarse Grained</td>
<td>Coarse Grained</td>
<td>No</td>
</tr>
<tr>
<td>Streaming</td>
<td>No</td>
<td>No</td>
<td>Yes - high latency</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Data pipelines</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>N/A</td>
</tr>
<tr>
<td>Machine learning</td>
<td>Yes</td>
<td>Yes</td>
<td>Performance can be poor</td>
<td>Performance can be poor</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

5.1 A Toolkit for Big Data

Our study has identified high level features of a big data runtime that determine the type of application which can be executed efficiently. This toolkit aims to compose systems using well-defined components, and has the following implications: 1) It will allow developers to choose only the components they need in order to develop the application. For example, a user may only want MPI-style communication with a static scheduling and distributed shared memory for their application; 2) Each component will have multiple implementations, allowing the user to support different types of applications, e.g., the toolkit can be used to compose a system that can perform streaming computations as well as data pipelines. We observed that communications, task scheduling and distributed shared memory (if required) are the three main factors affecting the applications. The API needs to adapt to each of these choices as well. Table 3 shows the different capabilities expected from different types of big data applications described herein.

6. CONCLUSIONS & FUTURE WORK

We foresee that the share of large-scale applications driven by data will increase rapidly in the future. The HPC community has tended to focus mostly on heavy computational bound applications, and with these new developments there is an opportunity to explore data-driven applications with HPC features such as high-speed interconnects and many-core machines. The data-driven computing frameworks are still in the early stages, and as we discussed there are four driving application areas (streaming, data pipelines, machine learning, service) with different processing requirements. In this paper we discussed the convergence of these application areas with a common event driven model. We also examined the choices available in the design of frameworks supporting big data with different components. Every choice made by a component has ramifications for performance of the applications the system can support. We believe the toolkit approach gives user the required flexibility to strike a balance between performance and usability and allows the inclusion of proven existing technologies in a unified environment. This will enable a programming environment that is interoperable across application types and system infrastructure including both HPC and clouds where in latter case it supports a cloud native framework [3]. The authors are actively working on the implementation of various components of the toolkit and APIs in order to deliver on the promised flexibility across various applications and systems.
Table 3: Requirements of applications

<table>
<thead>
<tr>
<th>Type of applications</th>
<th>Scheduling</th>
<th>API</th>
<th>Communications</th>
<th>Data and State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streaming</td>
<td>Static Scheduling</td>
<td>Static graph API</td>
<td>Optimized dataflow collectives</td>
<td>Coarse grain DSM, Local</td>
</tr>
<tr>
<td>Data Pipelines</td>
<td>Static/Dynamic Scheduling</td>
<td>Static or dynamic graph generation</td>
<td>Optimized dataflow collectives</td>
<td>Coarse grain DSM, Local</td>
</tr>
<tr>
<td>Machine learning</td>
<td>Dynamic Scheduling</td>
<td>Dynamic graph generation</td>
<td>Optimized dataflow/mpi collectives</td>
<td>Fine grain DSM, Local</td>
</tr>
<tr>
<td>FaaS</td>
<td>Dynamic Scheduling</td>
<td>Dataflow or Workflow</td>
<td>P2P Communication</td>
<td>Local</td>
</tr>
</tbody>
</table>

Acknowledgments

This work was partially supported by the Indiana University Precision Health Initiative and by NSF CIF21 DIBBS 1443054 and NSF RaPyDLI 1415459. We thank Intel for their support of the Juliet system, and extend our gratitude to the FutureSystems team for their support with the infrastructure.

7. REFERENCES

[17] J. Conejero, S. Corella, R. M. Badia, and J. Labarta. task-based programming in compss to converge from hpc to big data.

