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ABSTRACT
Hardware virtualization has been gaining a significant share
of computing time in the last years. Using virtual machines
(VMs) for parallel computing is an attractive option for
many users. A VM gives users a freedom of choosing an op-
erating system, software stack and security policies, leaving
the physical hardware, OS management, and billing to phys-
ical cluster administrators. The well-known solutions for
cloud computing, both commercial (Amazon Cloud, Google
Cloud, Yahoo Cloud, etc.) and open-source (OpenStack,
Eucalyptus) provide platforms for running a single VM or
a group of VMs. With all the benefits, there are also some
drawbacks, which include reduced performance when run-
ning code inside of a VM, increased complexity of cluster
management, as well as the need to learn new tools and
protocols to manage the clusters.

At SDSC, we have created a novel framework and infras-
tructure by providing virtual HPC clusters to projects us-
ing the NSF sponsored Comet supercomputer. Managing
virtual clusters on Comet is similar to managing a bare-
metal cluster in terms of processes and tools that are em-
ployed. This is beneficial because such processes and tools
are familiar to cluster administrators. Unlike platforms like
AWS, Comet’s virtualization capability supports installing
VMs from ISOs (i.e., a CD-ROM or DVD image) or via
an isolated management VLAN (PXE). At the same time,
we’re helping projects take advantage of VMs by providing
an enhanced client tool for interaction with our management
system called Cloudmesh client. Cloudmesh client can also
be used to manage virtual machines on OpenStack, AWS,
and Azure.

The article describes our design and approach to running
virtual clusters, the tools we developed, and initial user ex-
perience.
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1. INTRODUCTION
The national cyberinfrastructure trends supported by the

National Science Foundation includes two important classes.
The first is the tradition support of large scale parallel com-
puting needs by sophisticated scientific applications and tightly
coupled high-performance computing clusters and supercom-
puters. The other is the emerging long tail of computational
science, driven by new scientific domains (e.g., bioinformat-
ics, computational sociology, etc.) adopting the computer
as a key tool for research and with rapidly changing soft-
ware environments and workflows suited to loosely coupled
systems, referred to as the “long tail of science” [10]. How
to support these two classes of research in an efficient man-
ner is a challenge being faced at all scales: departmental;
campus; and nationally.

One approach to tackle this is to provide complete sepa-
rate machines and environments in support of both. How-
ever it is a valid research question to ask whether the re-
quirements for both classes could be provided by a joint op-
erational and hardware infrastructure. This is where Comet
[10] benefits the overall community by integrating some of
the requirements from both and providing a prototype which
combines these approaches. Comet’s goal is to primarily tar-
get the long tail of science but its operation and use could
be a model for possible future systems.

In contrast to other systems providing virtualization ca-
pabilities, Comet does not deploy an IaaS framework such as
OpenStack [11]. Instead, it is operated as a standard Linux
cluster, using a well known cluster management framework
(Rocks [1]) and scheduler (Slurm [15]) and integrates vir-
tualization concepts into them. As a result Comet uses the
batch system to schedule, start, stop and manage VMs. This
obviously is of great advantage as on the same machine can
provide a traditional batch computing environment for es-
tablished HPC users while leveraging the benefits of a queu-
ing system to dynamically allocate physical resources for
VMs. Moreover, the VMs have access to the InfiniBand
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network using SR-IOV [9] and can perform RDMA oper-
ation between define groups of VMs. This makes Comet
ideally targeted towards hosting virtual clusters instead of
just loosely coupled VMs.

We have ensured that the management of the virtual clus-
ters (VC) allows the use of common cluster tools such as
Rocks, xCAT [20], or Warewulf [7] using semantics based
off the experience of operating bare metal. This helps ex-
isting cluster administrators quickly build and manage their
VC by targeting their current skills and tools. Once the VC
is provisioned the administrator can deploy a custom soft-
ware environment supporting their research group’s unique
needs. This is particularly valuable for groups with rapidly
evolving software stacks from an emerging computational
science field. Obviously such a model with integration into
the queuing system has the advantage of better resource uti-
lization in a resource starved environment but at the same
time provides the necessary performance benefits that ad-
vances scientific applications need.

The paper is structured as follows. Next we provide some
important terminology that we use throughout the paper
(Section 1.1) and a more in depth look at the motivation
(Section 1.2). We outline the architecture (Section 2) and
report on our client interface (Section 3). We present some
preliminary results (Section 4) and conclude our paper (Sec-
tion 5).

1.1 Terminology
As the concept of using standard HPC infrastructure to

manage virtual clusters is new and introduces abstractions
that may not be available by standard virtualization frame-
works such as OpenStack, AWS, and Azure, we provide the
necessary terminology that we will use throughout this pa-
per. The biggest difference we have is in the introduction of
computesets. The definitions include:

Node: The term node is used to refer to individual comput-
ers in a virtual cluster. The term node is synonymous
with Virtual Machine (VM).

Compute: A node with substantial computational resources
used to perform work in a virtual cluster. Compute
Nodes (CN) are started and stopped on request by the
cluster administrator.

Frontend: A node with limited computational resources
used to manage a virtual cluster. Frontend Nodes (FN)
typically remain running 24 hours a day and can be
started and stopped on request by the cluster admin-
istrator

Virtual cluster: A virtual cluster (VC) is a loosely or tightly
connected network of FN and CNs managed together
by a virtual cluster administrator.

Computeset: A group of CNs started together and be-
ing in some state (submitted, started, finished, failed).
Each CN can only belong to 1 computeset in submit-
ted or active state. Compute sets can be merged to
build a larger virtual cluster on demand.

Image: A file containing the contents and structure (ISO9660)
of a disk volume which can be attached as a cdrom to
a node.

Image attach: Attach is an action applied to a node and
image pair whereby the contents of the image are made
available to a node on the next power on.

Image detach: Detach is an action applied to a node and
image pair whereby the contents of the image are made

unavailable to the node on the next power on.
Console: An interactive representation of the screen of a

node (text or graphical) provided to assist with node
installation and management.

1.2 Motivation
The reasons for creating the novel Comet virtual environ-

ment are to define an efficient system architecture for virtual
HPC clusters, provide VC performance comparable to the
underlying physical system, and to deliver an HPC platfrom
to the VC users and administrators in a familiar fashion.
VMs that are started on Comet are running on the same
servers as regular HPC jobs and VMs consequently have ac-
cess to the same high-performance hardware, including the
InfiniBand interconnect via SR-IOV, local flash drives, sig-
nificant amounts of RAM and multicore CPUs with vector
instruction sets. Combined with the semantics and man-
agement features we emphasize through our client interfaces
we deliver near bare-metal experience to the users and ad-
ministrators of the VCs. Hence the abstraction of a virtual
cluster mimics that of a physical one.

Two of the features that enable this bare-metal approach
for management are the private management VLAN and in-
stallation from an ISO image. Each VC has its own VLAN,
enabling the PXE-boot from a frontend server and full con-
trol of an associated local network. Via this abstraction
clusters can be management using existing tools mentioned
earlier, in addition to Cobbler [5] which also handles bare-
metal provisioning over a local network. Furthermore we
can leverage other commercial cluster management software
as well, like Bright Cluster Manager [3].

For installation and troubleshooting, a VM can be booted
up from a regular ISO image uploaded to Comet’s image
server and mounted on the desired server on request. Using
an ISO is for many the easiest way to install a frontend of a
cluster—a machine running 24/7 and providing access and
management for other nodes. Users can also start a compute
nodes using a regular ISO, or PXE-boot from the frontend
if an appropriate cluster management tool has been set up.
Hence compute nodes can be installed with minimum effort
while providing access to the desired OS supported by the
KVM hypervisor. There is no need to conduct complex ma-
nipulations of images or limit use to a handful of sanctioned
images. Users can control the installation process by open-
ing the Comet VM console in a browser with the cloudmesh
client tool (see Section 3).

HPC admins have extensive experience working with bare-
metal clusters and the existing tools. Switching to new
paradigms could require significant resources in time, hard-
ware and money spent to adopt such new approaches. This
also includes finding or writing new tools to adapt to new
system frameworks. Comet’s virtual environment makes
running virtual clusters straightforward by leveraging exist-
ing expertise of the users. Using such well known tools will
avoid the significant learning curve associated for example
with OpenStack as obvious from [12].

The disk image management on Comet is a unique fea-
ture that reduces the necessary storage and network infras-
tructure required while also providing VMs with fast local
storage. In short, the KVM disk images for the VMs in a
cluster are stored on a central server, but migrated to the
container while the VM is running and flushed back when
the VM is shut down. This lowers the effort needed for the



centralized storage server and limits the network bandwidth
utilized to transferring the image. This design also provides
VMs with disk performance based on the SSDs within the
physical compute nodes.

In addition to production use of Comet VCs, the near
bare-metal approach makes Comet them an excellent plat-
form for training. Groups can learn how to use tools that
work on their real systems in a controlled VM environment.
With our solutions, we demonstrate that VCs are easy to
set up, replicate, reinstall, and destroy. A new cluster can
be booted up for a class and quickly torn down after its
intended use [4]. Hence, we provide an efficient platform
for trainees that need to get experience with software and
services supported by access which is very close to the real
hardware. Consequently, the huge benefit of our Comet vir-
tual clusters is the combination of near bare-metal and VM
features while utilizing existing HPC batch systems.

2. ARCHITECTURE
We provide a brief overview of the system architecture

and summarize the components which support user managed
virtual HPC clusters in Comet.

Compute	
Virtual	
Compute	

Compute	

Compute	

Compute	

Compute	
Virtual	
Compute	

Compute	
Virtual	
Compute	

Compute	

Compute	
Virtual	
Compute	

Compute	

Frontend	Hos3ng	
Frontend	

Disk	Image	Vault	

public	

private	
private	

private	

Physical	Cluster	
Virtual	Cluster	#1		
Virtual	Cluster	#2	

Virtual	
Frontend	

Virtual	
Frontend	

Virtual	
Compute	

Virtual	
Compute	

Figure 1: Physical system architecture

Summary The virtual cluster (VC) environment for Comet
is implemented largely on top of production HPC resources.
Comet standard compute nodes are used to host VC com-
pute nodes (VCN) with resource allocation managed by the
production scheduler. The allocation of standard compute
nodes to the pool of nodes available for running VCNs can
be adjusted on demand.

Once a VC is defined on Comet a VC administrator is
able to install the VC frontend node (FN) with a system
software management stack of their choice. With the virtual
FN installed and configured the VC administrator is able to
start and complete the installation and configuration of their
VCNs. Installation of VCNs can be interactive and manual
or fully automated as all nodes can be PXE installed inside
the VC private network.

The resource usage of all VCNs is tracked as standard
HPC jobs linked to specific XSEDE allocations and usage is
reported to XSEDE via the standard mechanisms.

Nucleus. The management platform we developed for this
coordination is called Nucleus and consists of a web ser-
vice providing a REST API, a database for maintaining
state of managed resources, and a message queueing sys-
tem (based on RabbitMQ) providing connectivity and load
balancing between system components. Nucleus handles au-
thentication and authorization of VC administrators, tracks
and orchestrates VCN state changes and resource utilization,
provides console access to the VC nodes using Guacamole
service. The state of VCNs is periodically pushed to the
Nucleus management database. The Nucleus database pro-
vides all needed information to VC administrators requests
for a state. The Nucleus database is “eventually consistent”
with the state of the physical cluster. This approach min-
imizes the effect of VC administrator state requests on the
production scheduler.
Rocks. Rocks KVM roll provides the mechanism for run-
ning and managing VMs on Comet physical hardware. Nu-
cleus uses standard Rocks commands to periodically query
the state of all physical and virtual resources and to execute
commands on behalf of VC administrators to manage the
resources belonging to their VC.
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Figure 2: Virtual cluster network topology

Networking. Frontend and compute nodes are hosted on
physical hosts with two (private and public) or one (pri-
vate) 10Gbps Ethernet interfaces, respectively. The private
network interfaces of all VMs in a VC are connected to a log-
ical VLAN device. Logical VLAN devices are raw, tagged
packet interfaces, using the Macvtap driver. Frontend pub-
lic interfaces are bridged either directly to a 10GbE interface
or to a virtual VLAN device on the physical host. Physical
hosts also provide one FDR InfiniBand interface with one or
more Single Root IO Virtualization (SR-IOV) virtual func-
tions enabled. All VMs of a single VC are configured to use
InfiniBand SR-IOV virtual functions with a single common
pkey.
Scheduling. Frontend nodes run constantly at no charge
and provide access to the compute nodes of their associ-
ated virtual cluster. VC administrators can start compute
nodes on any physical compute node assigned by the Comet
scheduler.
Image Storage. The implemtation of VCs in Comet also
requires a Network Attached Storage (NAS) (Disk Image



Table 1: REST interface of the Comet virtual cluster service.
REST URL Description

GET /v1/cluster/ gets the list of all clusters
GET /v1/cluster/{cluster.name} Obtain details about the named cluster
DELETE /v1/cluster/{cluster.name} Destroy the named cluster
GET /v1/cluster/{cluster.name}/compute/{compute.name} Obtain the details of a named compute resource in

a named cluster
DELETE /v1/cluster/{cluster.name}/compute/{compute.name} Destroy the named compute resource in a named

cluster
PUT /v1/cluster/{cluster.name}/compute/{compute.name}/attach iso Attach an ISO to the named compute resource

in a named cluster
PUT /v1/cluster/{cluster.name}/compute/{compute.name}/poweroff Power off the named compute resource in a named

cluster
PUT /v1/cluster/{cluster.name}/compute/{compute.name}/poweron Power on the named compute resource in a named

cluster
PUT /v1/cluster/{cluster.name}/compute/{compute.name}/reboot Reboot the named compute resource in a named

cluster
POST /v1/cluster/{cluster.name}/compute/{compute.name}/rename Rename the named compute resource in a named

cluster
PUT /v1/cluster/{cluster.name}/compute/{compute.name}/reset Reset the named compute resource in a named

cluster
PUT /v1/cluster/{cluster.name}/compute/{compute.name}/shutdown Shutdown the named compute resource in a named

cluster
GET /v1/cluster/{cluster.name}/frontend/ Obtain the details of a frontend resource in a

named cluster
PUT /v1/cluster/{cluster.name}/frontend/attach iso Attach an ISO to the frontendresource in a named

cluster
PUT /v1/cluster/{cluster.name}/frontend/poweroff Power off the frontend of a named cluster
PUT /v1/cluster/{cluster.name}/frontend/poweron Power on the frontend of a named cluster
PUT /v1/cluster/{cluster.name}/frontend/reboot Reboot the frontend of a named cluster
PUT /v1/cluster/{cluster.name}/frontend/reset Reset the frontend of a named cluster
PUT /v1/cluster/{cluster.name}/frontend/shutdown Shutdown the frontend of a named cluster
GET /v1/cluster/{cluster.name}/compute/{compute.name}/console/ Open VNC console to named compute resource
GET /v1/cluster/{cluster.name}/frontend/console/ Open VNC console to name frontend resource
POST /v1/computeset/ Power on a set of computes creating a ComputeSet
GET /v1/computeset/ list the compute set
GET /v1/computeset/{computeset.id} Obtain the details of the identified ComputeSet
PUT /v1/computeset/{computeset.id}/poweroff Power off the identified ComputeSet
PUT /v1/computeset/{computeset.id}/reboot Reboot the nodes in the identified ComputeSet
PUT /v1/computeset/{computeset.id}/reset Reset the nodes in the identified ComputeSet
PUT /v1/computeset/{computeset.id}/shutdown Shutdown the nodes in the identified ComputeSet
GET /v1/user Returns Users details in JSON format
PUT /v1/user Returns Users details in JSON format
PATCH /v1/user Returns Users details in JSON format
GET /v1/project Returns project details
GET /v1/image Gets the list of images
POST /v1/image Adds and image

Vault, Figure 1) — a server with a large disk pool for VM
images and ISO files. VM images are stored as ZFS datasets
on the NAS with each VM owning a single image. The Image
Storage system orchestrates the creation and destruction of
iSCSI targets providing read-only access to VM images res-
ident on the NAS. This allows VMs to start booting almost
instantly. Image Storage also migrates a copy of the VM im-
age to the physical node hosting the VM and creates a local
temp-write volume to receive writes from the VM while the
migration is underway. After migration is complete the VM
is briefly paused, the migrated VM image and temp-write
image are merged, the iSCSI target is disconnected and the
VM is resumed with both reads and writes accessing the lo-
cal copy of the VM image. At this point the VM is fully
autonomous from the NAS providing great capabilities of
scaling without putting load on the NAS or network. Pe-
riodic snapshots of the local, ZFS backed, VM images are
automatically created and copied back to the NAS keeping

VM images backed up in case the physical node crashes.
The final synchronization of changes to VM images after
VM shutdown allows the VM image state to be persisted
until the next VM boot.
Messaging. We implemented an asynchronous communi-
cation system between the components of the image man-
agement system, and also Nucleus components connections
using the AMQP messaging system RabbitMQ. We have
Celery workers running in several locations in the system,
receiving AMQP messages with jobs and normally replying
with AMQP messages as well. This ensures smooth opera-
tion under high loads by scheduling jobs in a queue rather
than trying to perform those as they come, and ease of scal-
ing by adding more resources with running daemons.
REST Interface In order to support the concept of virtual
clusters on Comet we provide a secure REST service to ac-
cess them. The basic REST signatures are listed in Table 1.
However the client interface that uses these rest calls pro-



vide additional functionality and allow easy scripting which
is demanded by VC administrators. We describe the client
in Section 3.

3. CLOUDMESH CLIENT
The Cloudmesh Client toolkit [16] is a lightweight client

interface for accessing heterogeneous clouds, clusters, and
workstations right from the user’s computer. The client has
its origin in [6, 19, 17]. With the client a user can manage
their own set of resources enabling management of a per-
sonalized cyber infrastructure. It includes an API, a com-
mandline client, and a commandline shell. Extensibility is
provided via convenient abstractions. A local database al-
lows caching of information from remote resources. This is
an essential feature of Cloudmesh as it allows users to pre-
serve a view of the infrastructure even in cases where it may
not be reachable. Obviously, such a cache is especially use-
ful for large scientific workflows and services that require the
management of many tasks. Administrators naturally need
such a cached view in order to identify faults and to effec-
tively preserve the view of resources that need to be accessed
or have been created in the past.

Furthermore, users can, via the provided abstractions,
switch easily between or utilize together virtual machines
from OpenStack, Amazon, Azure Clouds, and Comet vir-
tual clusters [10]. Hence a greater ability to deal with faults
or system failures can be achieved. Cloudmesh Client can
be installed on Linux, OSX, and Windows. Currently we
support backends to SLURM, SSH, OpenStack, Azure, and
AWS. A Docker interface is planned.1 Next we provide a
short overview of the main features of the Cloudmesh Client.
Client based. Cloudmesh Client as the name indicates is
a client based toolkit that installs and runs on the users or
administrators computers. An optional prototype portal is
also available as an add on.
Layered Architecture. Cloudmesh Client has a layered
architecture (Figure 3) that allows easy development of new
features. This also allows contribution by the community
while developing integrated and smaller sub components. A
resource abstraction layer allows the integration of a mul-
titude of resources spanning HPC, Containers, and Cloud
resources. This layered architecture is augmented with a
number of components (Figure 4) that together build the
overall and expandable Cloudmesh Client architecture pro-
viding a rich feature set.
State Caching. Cloudmesh contains necessary state about
the resource and environment that a user may want to use.
The information is managed in a database abstraction that
would allow storing the data in a variety of databases such
as SQL and MongoDB. At this time we have chosen SQLite
to be the default database as it does not require any ad-
ditional setup and is universally available on all operating
systems without change. Previously we also provided a Mon-
goDB based backend system, but for the Comet client it is
beneficial to interact with the system without the need of
additional services.
Security Management. For Comet users, it is benefi-
cial that access to the backend services are enabled with

1In the past we supported AWS and Azure which we are
integrating back into the client and will be available at time
of publication. Our main focus so far was the ability to
add OpenStack in support of upcoming systems such as Jet-
stream and virtual clusters such as used in Comet
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cm comet cluster ID

– Show the cluster details
cm comet start ID vm-ID-[0-3] -walltime=6h

– Boot 3 nodes for 6 hours
cm comet iso attach image.iso ID vm-ID-3

– Attach an iso image
cm comet power on ID vm-ID-0

– Power on node 0
cm comet console ID vm-ID-0

– open the console for the node

Figure 5: Example Comet client commands

secure credentials managed on the user’s machine as well
as with token based service access. This reflects best prac-
tice by many supercomputing centers. Through abstrac-
tions integration with hosted security services [2] would also
be possible. However our integration in clouds is naturally
done outside such frameworks and allows user to individu-



ally add their credentials for services such as Azure, AWS,
and other public clouds into the client easily. We have an ex-
ploratory project in place that looks at the use of Yubikeys
for Cloudmesh Client and Cloudmesh Portal [21]. This will
allow an additional 2 factor authentication as part of ac-
cessing services used by the users. Hence, the Cloudmesh
Client deals with the secured connection and interaction by
considering the appropriate interactions with the different
backends. For the Comet virtualized cluster, it handles the
initial apikey retrieval, once a user is authenticated to the
nucleus service. It also handles all the subsequent calls in
a secured fashion by dealing with the messages signing, en-
cryption and decryption via utilizing proper libraries.
Command Shell and Command Line. Cloudmesh con-
tains a command shell allowing scripts and interactive use.
However we designed the command shell in such a way that
each command can also be called from the command line re-
ducing development and maintenance efforts. Through the
Cloudmesh database abstraction the state is synchronized
between different components.
Cloudmesh Client Portal. Previously, we distributed
Cloudmesh with client, server, and a portal in one package.
This however turned out to be too complex to be installed
for some of our less technically skilled user communities.
Thus we split up the original Cloudmesh into multiple in-
dependent packages, such as the Cloudmesh Client and the
Cloudmesh Portal. The portal provides currently a mini-
mal feature set to manage virtual machines and HPC jobs.
It showcases how to integrate the client and the rest ser-
vices in more elaborated portal frameworks. We will expand
upon the existing features and make the portal more feature
complete. Due to our focus on the Comet community, the
commandline client has an increased development priority
as it allows users to automatize advanced DevOps workflows
through scripting.
Cloudmesh Comet. We are actively developing the client
interface for SDSC’s Comet [14] supercomputer allowing
near bare metal provisioning. The interface reuses Cloudmesh
components and technologies while interfacing with the Comet
Nucleus REST interface. Through this interplay the virtual
cluster administrators are enabled to utilize tools and ser-
vices that the they typically use to manage an on-premise
bare metal cluster. As part of this development we have
developed an easy to use high level command line interface
specifically targeted to Comet’s features. This includes the
following functionality:

• Configuring the nucleus service endpoint and the au-
thentication tokens or keys.
• Getting information and status of the users cluster(s),

nodes, computesets, and other entities.
• Power management of the cluster frontend node.
• Request resource allocation to boot the users node(s);

and release the resource upon completion.
• Power management to shutoff, power on, reboot com-

pute node(s) during the lifetime of the requested re-
source allocation.
• Getting console access to the frontend node or a run-

ning compute node
• System ISO image management. This includes list-

ing available ISO images, upload new images, and at-
tach/detach an ISO to/from one or more compute nodes.
• Convenient management commands to, for example,

renaming compute nodes either individually or in batch.

Some example commands are depicted in Figure 5. The
manual page is shown in Figure 6.

comet init
comet ll [CLUSTERID] [--format=FORMAT]
comet cluster [CLUSTERID][--format=FORMAT]
comet computeset [COMPUTESETID]

[--allocation=ALLOCATION]
[--cluster=CLUSTERID]
[--state=COMPUTESESTATE]

comet start CLUSTERID
[--count=NUMNODES]
[COMPUTENODEIDS]
[--allocation=ALLOCATION]
[--walltime=WALLTIME]

comet terminate COMPUTESETID
comet power (on|off|reboot|reset|shutdown)

CLUSTERID [NODESPARAM]
comet console CLUSTERID [COMPUTENODEID]
comet iso list
comet iso upload [--isoname=ISONAME] PATHISOFILE
comet iso attach ISONAME CLUSTERID [COMPUTENODEIDS]
comet iso detach CLUSTERID [COMPUTENODEIDS]
comet node rename CLUSTERID OLDNAME NEWNAME

Options:
--format=FORMAT Format is either table, json,

yaml, csv, rest [default: table]
--count=NUMNODES Number of nodes to be powered on.

When this option is used, the
Comet system will find a NUMNODES
number of arbitrary nodes that
are available to boot as a
computeset

--allocation=ALLOCATION Alocation to charge
--walltime=WALLTIME Walltime requested for node(s).

An integer followed by a unit
(m,h,d,w, for minute, hour, day)
E.g., 3h, 2d

--isoname=ISONAME Name of iso image
--state=COMPUTESESTATE List computeset with the given

state. The state could be
submitted, running, completed

Arguments:
CLUSTERID The assigned name of a cluster, e.g. vc1
COMPUTESETID An integer identifier assigned to a

computeset
COMPUTENODEID A compute node name, e.g., vm-vc1-0

If not provided, the requested action
will be taken on the frontend node of
the specified cluster

COMPUTENODEIDS A set of compute node names in hostlist
format, e.g., vm-vc1-[0-3]
If not provided, the requested
action will be taken on the frontend
node of the specified cluster

NODESPARAM Specifying the node/nodes/computeset to
act on. In case of integer, will
be intepreted as a computesetid; in case
of a hostlist format,
e.g., vm-vc1-[0-3], a group of nodes;
or a single host is also acceptable,
e.g., vm-vc1-0

ISONAME Name of an iso image at remote server
PATHISOFILE The full path to the iso image file to

be uploaded

Figure 6: Cloudmesh Comet CLI Manual Page

As previously mentioned, the Cloudmesh Comet Client deals
with the authentication to CometNucleus and handles the
subsequent request in a secured fashion. It also processes



the returned result from the requests and is able to present
feedback in various formats. This is essential as it enables
the user either for read in the terminal in a human read-
able format such as tables or for easy scripting while being
able to access the information in YAML, JSON, or CSV.
Furthermore, the client creates data mashups from multi-
ple information requests via the REST interfaces in order
to generate combined information views. A good example is
the Cloudmesh Client cluster view as it combines the data
from the cluster call and computeset call to generate a view
with node information, comuputeset association and status,
account and allocation data, all included in one view for easy
consumption.
Cloudmesh Client Comet Python API. Cloudmesh
Client is written in Python and provides in addition to the
commandline and command shell a Python API. This API
provides high level functionality such as data mashups that
are not available in the REST interface and provides therefor
additional convenient abstractions [18].
Easy Installation. The Cloudmesh Client is easy to in-
stall. It is available via pip and the source code is publicly
hosted on Github [18]. Python 2.7 and Python 3.5 is sup-
ported.

4. RESULTS AND USECASES
We report on some of our use cases while focussing in partic-
ular on the use of virtual machines and virtual clusters, as
well as giving an outlook of selected planned improvements
based on lessons learned.

4.1 Heterogeneous VM Management
Over the last 2 years we have used Cloudmesh in a num-
ber of classes and research projects to access clouds from a
variety of sources. This includes the management of classes
with more than 70 users, but also the support of individual
researchers with the need to conduct infrastructure exper-
iments. Cloudmesh has been shown to be able to access
Chameleon Cloud, CloudLab, Cybera in Canada, HP cloud,
Amazon WS, Azure. Most recently we also showcased po-
tential access to Jetstream. One of the interesting benefits of
this rich diversity is that educational efforts can be targeted
for a particular platform while the interface to them for man-
aging virtual machines is the same. In our experience with
classes and potential user this is an advantage, as when the
switch of a single variable (e.g., the name of the cloud) a VM
or VC can be created on a different infrastructure reducing
the load on the original system. Hence, reliability can be
increased without introducing additional complex and di-
vergent interfaces for the diverse set of clouds. Future use
cases will include class use of Comet VC for a planned grad-
uate course that can serve up to 140 new applicants to the
newly created data science program at Indiana University.
As we demonstrated with Cloudmesh Client we would also
be able to access other XSEDE resources such as Jetstream
and Bridges once they become available to us and offer pro-
gramable interfaces that we can integrate in Cloudmesh.

4.2 OnDemand Hackathon Support
In February 2016 SDSC hosted a hackathon [4] related to
the activities of CAIDA the Center for Applied Internet
Data Analysis. “CAIDA provides macroscopic insights into
Internet infrastructure, behavior, usage, and evolution, fos-
ters a collaborative environment in which data can be ac-

quired, analyzed, and (as appropriate) shared, improves the
integrity of the field of Internet science, and informs sci-
ence, technology, and communications public policies.” The
hackathons theme was live measurements and monitoring
of the global Internet routing system (BGP). A total of 90
attendees participated in the event representing a mix of
Academia, Industry and Institutions. Comet provided com-
pute resources to participants, including several virtualized
nodes, that were essential for the success of the event. Over
15,000 SUs were used during 24 hours of activities. The
virtualized nodes were especially important as they allowed
CAIDA adminstrators to install a different OS and applica-
tion software stack than that which exists on Comet .

4.3 Open Science Grid
The Open Science Grid (OSG) [13] provides an integrated fa-
cility to access compute resources through distributed high
throughput computing for researchers in the US. The re-
sources are contributed by the community and organized by
OSG. Many projects are executed on OSG, one of which
is the Laser Interferometer Gravitational-Wave Observatory
(LIGO). LIGO is“designed to open the field of gravitational-
wave astrophysics through the direct detection of gravita-
tional waves predicted by Einstein’s General Theory of Rel-
ativity” [8].
Comet has delivered 700,000 SUs to LIGO via OSG since
its inception. Thus Comet contributed considerably to both
efforts, OSG and LIGO. In November 2015 OSG began op-
erating a VC on Comet and immediately began running cal-
culations related to LIGO. The integration within OSG has
been conducted in two modes to demonstrate its wide us-
ability (see Figure 7).

Comet
Virtual Cluster

Comet
Supercomputer

OSG
Metascheduling

Service

OSG
Access Point

Local
Cluster

Other 
Resources

Goal to use the same 
images/setup

Different setup

Figure 7: Open Science Grid use cases

The first mode is the traditional integration of a supercom-
puting allocation while utilizing the batch system and exist-
ing specialized integration of batch job capabilities accessed
by the OSG metascheduler. This mode requires additional
layers of abstraction between the OSG metascheduler and
the batch system on the compute resource. The second one
is the integration of a VC that is based on software used
for the operation of the local OSG cluster and thus shares
the same infrastructure requirements in regards to operat-
ing system and other services. Hence no abstraction layer
is needed as a standard OSG system definition and software



stack can be used and run on the VC. In contrast to other
virtualization infrastructures and efforts we are currently ex-
ploring the utilization of MPI jobs within the VC to make
use of the underlying high performance networking infras-
tructure accessible from within the OSG VMs. These VMs
already utilize the virtualized InfiniBand HCAs to access
storage.

5. CONCLUSIONS
We have proven that it is possible to integrate virtual ma-
chine management leveraging an existing HPC batch queu-
ing systems as part of the operation of a major national
scale compute infrastructure. This novel technology solu-
tion and operational model provides the ability to integrate
best practices from both approaches, traditional supercom-
puting and utilizing virtual machines to further the long tail
of science. Overall management of such a system is reduced
as it is well integrated in to HPC administrators familiar
toolset. This applies both to the operation of Comet and
the virtual clusters it hosts.
Additionally, we developed a powerful client interface to
Comet’s virtualization system. The Cloudmesh client was
developed with the goal to interface easily and to enable
its users to have access programmatically to Comet via a
Python API, a command shell, a commandline tool and
a prototype portal. Furthermore as new features become
available the client provides an easy mechanism to be up-
dated.
We have utilized the tools and capabilities provided in this
paper in a variety of different scenarios and shown that they
are beneficial for the particular effort. As part of our ef-
forts new use cases, namely training and development, have
emerged.
We will expand upon our current already operational pro-
totypes and integrate them into a production system that
will be available soon (during Q2 2016). Users that are in-
terested today to explore the virtual modality of Comet or
Cloudmesh client for comet should contact the authors of
the paper.
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