CONCURRENCY—PRACTICE AND EXPERIENCE

Concurrency: Pract. Ezper. 2000; 00:1-7 Prepared using cpeauth.cls [Version: 2001/03/05 v2.01]

The Gateway Computational

Web Portal

Marlon. E. Pierce *:f, Choonhan Youn ¥, Geoffrey

C. Fox}

School of Computational Science and Information Technology, Florida State Universi
Tallahassee, FL 32306-4120; and
Indiana Pervasive Computing Research Initiative, Department of Computer Science, Indiana

University, Bloomington, IN 47405-7104.

SUMMARY

In this paper we describe the basic services and architecture of Gateway, a commodity-
based web portal that provides secure remote access to unclassified Department of
Defense computational resources. The portal consists of a dynamically generated,
browser-based user interface supplemented by client applications and a distributed
middle tier, WebFlow. WebFlow provides a coarse-grained approach to accessing both
stand-alone and grid-enabled back end computing resources. We describe in detail
the implementation of basic portal features such as job submission, file transfer, and

job monitoring and discuss how the portal addresses security requirements of the

*Correspondence to: 2435 Fifth Street, WPAFB, OH 45433-7802
fE-mail: pierceme@asc.hpc.mil
{E-mail: cyoun@csit.fsu.edu

$E-mail: foxQcsit.fsu.edu

Received

Copyright © 2000 John Wiley & Sons, Ltd. Revised

2 MARLON E. PIERCE, CHOONHAN YOUN, GEOFFREY C. FOX %

deployment centers. Finally, we outline future plans, including integration of Gateway

with Department of Defense testbed grids.

KEY WORDS: computational portals, computing environments, computational grids

1. INTRODUCTION

Computational grid technologies hold the promise of providing global scale distributed
computing for scientific applications. The goal of projects such as Globus[1], Legion[2], Condor
[3], and others is to provide some portion of the infrastructure needed to support ubiquitous,
geographically distributed computing [4, 5]. These metacomputing tools provide such services
as high-throughput computing, metaqueuing jobs across multiple machines, high-performance
file transfer, information management, and security.

However, there are many services that these grid infrastructure technologies have not
completely addressed. First and foremost, grid services can be daunting to use, especially
to users not familiar with high performance computing (HPC) operating systems, queuing
systems, and so forth. Second, from the application user’s point of view, using HPC resources
on a grid may be just one part of the task he or she has to accomplish. The use of grid resources
needs to be seamlessly integrated with, for instance, commercial applications for pre- and post-
processing data. Third, while technological challenges to integrating different grid technologies
may be overcome, the sociological and institutional problems may be intractable, or at least
solvable only over a much longer time scale. Thus it seems very likely, for example, that a

single grid tying together the U. S. Department of Defense, Department of Energy, National

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

% THE GATEWAY COMPUTATIONAL WEB PORTAL 3

Science Foundation, and other institutions will be difficult to achieve, although within each of
these institutions there might be one or more computational grids. Federating these grids with
European and Asian grids introduces even greater hurdles. However, from a user’s point of
view there may not be the same problem, as a single user may acquire accounts from different
institutions. Thus, our hypothetical user would benefit from a single environment that ties
together his or her personal list of resources, even if there is no formal relationship between
the institutions. Fourth and last, even within a particular institution there will be both HPC
resources on a grid and resources kept isolated from the grid. Again, a user of these resources
is likely to need both, so from his or her perspective there is a need to manage these resources

from a single environment,.

Grid computing environments address the problems of the preceding paragraph. One
common type of such an environment is a web portal, which takes advantage of the technologies
and standards developed for Internet computing such as HTTP[6], HTML[7], XMLI[8], CGI,
CORBAJ9, 10], and Java[l11], and uses them to provide browser-based access to HPC systems
(both on the grid and off). These portals may offer additional services as well, such as

collaborative capabilities.

We have developed a computational web portal system, Gateway, for the Aeronautical
Systems Center and Army Research Laboratory Major Shared Resource Centers. The goal
of the Gateway project is to provide an intuitive browser interface that hides the difficulties
of accessing and using HPC resources, and to do so in a secure manner. Gateway and the
Mississippi Computational Web Portal (also described in this issue) share a common design

heritage.

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

4

MARLON E. PIERCE, CHOONHAN YOUN, GEOFFREY C. FOX %

The intent of Gateway is to provide web interfaces for a number of different technology areas,

such as chemistry and material science, structural mechanics, and fluid dynamics. Interfaces

for these disparate areas can be extended from a set of generic services that provide the

portal’s core functionality. During the current phase of Gateway’s development, we identified

and implemented the following core services:

(i)

(vi)

(vii)

Security: allow access only to authenticated users, give them access only to authorized
areas, and keep all communications private.

User session state management: archive all of the user’s interactions with the system,
and allow the user to recover and edit old sessions.

Information resources: inform the user what codes and machines are available.

Queue script generation: based on the user’s choice of code and host, create a script to
run the job for the appropriate queuing system.

Job submission: through a proxy process, submit the job with the selected resources for
the user.

Job monitoring: inform the user of the status of his submitted jobs, and more generally
provide events that allow loosely coupled applications to be staged.

File transfer: allow the user to transfer files between his desktop computer and a remote

system, and to transfer files between remote systems.

These constitute the basic set of services. Other services that we are developing include

collaborative job control, shared visualization, and task composition to create meta-jobs out

of atomic tasks.

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

% THE GATEWAY COMPUTATIONAL WEB PORTAL 5

The Gateway portal is implemented using the classic three-tiered architecture. These tiers
separate functionality and responsibility, allowing us to develop pieces independently. Figure
1 illustrates a sample configuration; the actual configuration for a specific site can be varied
as described below to agree with the security requirements of that site. The user interacts
with the portal through either a web browser, a client application, or both. This is illustrated
in Figures 2 and 3. The Tool Bar contains Java applications such as a file browser (shown)
and a job monitor. Users can also submit pending jobs to the middle tier directly through the
Tool Bar. Users also interact with the portal through any standard browser. The over-the-wire
connection protocols between the client and the remote server include HTTP(S), IIOP[10], and
SECIOP[12]. These latter two are the CORBA standard and secure protocols, respectively. The
middle tier consists of two basic sections: a web server running a servlet engine (a Java Virtual
Machine, or JVM) and a distributed CORBA-based middle tier (WebFlow). The web server
typically runs a single JVM on a single server host that contains JavaBean components. These
components may implement specific local services, or they may act as proxies for WebFlow
distributed components running in different JVMs on a nest of host computers. WebFlow
servers consist of a top level master server and any number of child servers. The master server
acts as a gatekeeper and manages the life cycle of the children. These child servers can in turn
provide access to remote back end services such as HPCs running PBS or LSF queuing systems,
a Condor flock, a Globus grid, and data storage devices. Direct communication between the

back end services is also possible.

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

6 MARLON E. PIERCE, CHOONHAN YOUN, GEOFFREY C. FOX %

2.1. User Interface

The central idea of the Gateway user interface is to allow users to organize their work into
problem contexts, which are then subdivided into session contexts. Problems are identified
by a descriptive name handle provided by the user, with sessions automatically created
and time-stamped to give them unique names. Within a particular session, the user chooses
applications to run and selects resources such as the number of nodes for parallel jobs, memory
requirements, and wall-clock time. This interface organization is mapped to components in
the WebFlow middleware described below. The data gathered from a particular session is
represented internally as a linked set of hash tables. This structure is mapped into a directory
structure on the server and stored persistently. We refer to the entries in the hash tables as
context data.

Within the user interface we provide three tracks: code selection, problem archive, and
administration, as shown in Figure 3. The code selection track allows the user to start a new
problem, make an initial request for resources, and submit the job request to the selected
host’s queuing system. The problem archive allows the user to revisit and edit old problem
sessions so that she can submit her job to a different machine, use a different input file, and
so forth. Changes to a particular session are stored in a newly generated session name. The
administration track allows privileged users to add applications and host computers to the
portal, modify the properties of these entities, and verify their installation. This information
is stored in an XML data record, described below.

The user interface is developed using JavaServer Pages (JSP), which allow us to dynamically

generate web content and interface easily with our Java-based middleware. For example, Figure

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

% THE GATEWAY COMPUTATIONAL WEB PORTAL 7

5 shows a list of available applications and hosts. This is generated from an XML data record.
A portal administrator can edit the data record to, for example, add a new host, so the Code

Selection page will be automatically updated the next time any user visits it.

We remove flow control from the pages themselves, implementing this through an
administrative Java servlet by using the “Command” design pattern [13, 14], illustrated in
Figure 4. This allows us to easily insert new pages or otherwise alter the flow between pages,
and to encapsulate additional functionality between certain pages. For instance, the “Submit”
button for running a job invokes the control servlet, which looks up the appropriate command
object from a hash table. This command results in a call to the middleware tools for job
submission and a display of the next page in the user interface. We implemented this design in
order to provide a user interface that can be easily improved and expanded by web developers
with only a minimal knowledge of Java, high-performance computing, and grid technologies.
At the current stage of development we are more interested in providing the framework tools

for building user interfaces than in the user interfaces themselves.

2.2. Component-Based Middleware

The middle tier acts as the service broker that links the user’s requests to the appropriate back-
end resources. Because of the designed linkage between JavaBeans and JSPs, we partially
implement the middle tier as JavaBean components. However, JavaBeans all run on the
same host server, which does not allow us to deploy a distributed middle tier on multiple,
perhaps geographically distributed, hosts. To do this we have a more powerful, CORBA-based

implementation of the JavaBeans specification called WebFlow. In principal this would allow

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

8 MARLON E. PIERCE, CHOONHAN YOUN, GEOFFREY C. FOX %

us to handle load balancing by distributing the server workload among various machines, but
the primary goal is to provide a network of proxies on machines that may have different file

systems or that may even be operated by different organizations.

The WebFlow middleware has been described elsewhere [15, 16, 17, 18], and we will only
summarize it here. Also, for a general overview of the role of commodity technologies in
computational grids, please see Ref. [19]. WebFlow allows a hierarchical arrangement of
CORBA servers to be created. A single server acts as a parent and gatekeeper to any number
of child servers. Child servers themselves can contain child servers of their own, and so on.
This is depicted in Figure 6. The parent server maintains proxy images of all its children and
acts as a single entry point for contacting the children. Within a particular child, we can add
containers that map to the user’s base context, problem contexts, and session contexts of the
user interface. The servers can also hold modules, CORBA implementation files that provide

specific services.

Clients contact and interact directly with the parent (root) server only, which acts as a
naming service to forward requests on to the appropriate child. We use a standard directory-
style naming convention for child servers, so for example a grandchild server named “gchild”
would be accessed through the root by the name “parent/child/gchild.” A particular child
component is added to a parent by a mechanism analogous to the container organization used
to create graphical user interfaces. Parents can contain any number of children, but children
have a single parent, resulting in a tree structure. A server within the hierarchy tree can
contain both child servers and modules, and a particular module can be added to any number

of servers. Thus, for example, two child servers at two different sites can each contain a module

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

% THE GATEWAY COMPUTATIONAL WEB PORTAL 9

for accessing the remote file system. A client contacting the parent server could then Iook up
each of these children and thus have transparent access to the two file systems through a single

entry point.

3. DATA DESCRIPTORS

In our portal design, we identified several groups of portal data that need to be described using
XML [8]. We refer to these objects as descriptors and have so far defined descriptions of host
machines, applications, and portal services.

XML descriptors are used to describe data records that should remain long lived, or static.
As an example, an application descriptor contains the information needed to run a particular
code: the number of input and output files that must be specified on the command line, the
method that the application uses for input and output, the machines that the code is installed
on, etc. Machine, or host, descriptors describe specific computing resources, including the
queuing systems used, the locations of application executables, and the location of the host’s
workspace. Taken together, these descriptors provide a general framework for building requests
for specific resources that can be used to generate batch queue scripts.

To implement application and host descriptors, we adopted the eXtensible Scientific
Interchange Language (XSIL) [20]. XSIL was developed as a description language for scientific
data. XSIL defines a relatively small set of generic data markup tags. The power of XSIL
comes from the ability to associate markup tags with Java code that extracts information
from the tags. XSIL documents for a specific application are associated with Java code that

extends the functionality of the base XSIL Java classes. Thus, XSIL can be appropriated for

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

10 MARLON E. PIERCE, CHOONHAN YOUN, GEOFFREY C. FOX %

general data descriptions. By adopting XSIL, we sacrifice some expressiveness and specificity
when describing our portal data, but gain the advantage of a rapidly deployable system that
can be easily adapted to our needs. XSIL’s generality furthermore makes it easy to develop
descriptors that can be extended to include additional information without introducing new
tag definitions. Finally, we gain the advantage of a single markup language for describing both

portal and scientific data.

In addition to application and host descriptors, we have implemented a third descriptor
type to describe services. Service descriptors are used to describe the interfaces to particular
WebFlow modules, rather than data records. Here XML is used since it represents a language-
independent means of describing an interface that may be implemented in any particular
programming language. In our current implementation, we use Java bindings for dynamically
loaded CORBA objects. These objects are stored in a CORBA Interface Repository, so the
appropriate translation of the service descriptor is to CORBA’s Interface Definition Language

(IDL).

I th§ PRVIDQTHANMMPE RAPENTATEONSrall architecture of the system and the information
descriptors that we use. We now describe how these components are used to implement the

basic services. Security is described in a separate section.

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

% THE GATEWAY COMPUTATIONAL WEB PORTAL 11

4.1. File Transfer

One of the important services we identified in planning the current phase of development was
a file transfer mechanism that would allow entire directories to be transfered between the
desktop and the remote servers using a simple user interface. This is illustrated in Fig. 2.
This is intended to supplement file uploading and downloading through the browser. Although
multiple file uploads are allowed in the HTTP specification, most browsers do not support
this feature. We have implemented this as a client-side application that communicates directly
from the user’s desktop to a WebFlow server running a specially written module that can read
to and write from the remote file system. Java input/output classes are used to access files
on both the local and remote file systems. Files are then translated into binary arrays and
passed over the wire using either IIOP or SECIOP. We can use this to send entire directory
structures between machines, but in practice we limit transfers to include only the files in the

chosen directory, not any subdirectories.

4.2. Batch Script Generation

The Gateway portal is designed in part to aid users who are not familiar with HPC systems
and so need tools that will assist them in creating job scripts to work with a particular queuing
system. From our viewpoint as developers, it is also important to design an infrastructure that
will allow us to support many different queuing systems at different sites. It was our experience
that most queuing systems were quite similar (to first approximation) and could be broken
down into two parts: a queuing system-specific set of header lines, followed by a block of script

instructions that were queue independent. We decided that a script generating service would

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

12 MARLON E. PIERCE, CHOONHAN YOUN, GEOFFREY C. FOX %

best be implemented with a simple “Factory” design pattern [13], with queue script generators
for specific queues extending a common parent. This is illustrated in Figure 7. This allows us
to choose the appropriate generator at runtime. New generators can be added by extending a

common parent. Currently we support PBS, LSF, and GRD queuing systems.

Queue scripts are generated on the server, based on the user’s choice of machine, application,
memory requirements, etc. This script is then moved (if necessary) to the selected remote host
using a WebFlow module. The information needed to generate the queue script is stored as
context data, described below. This allows the user to return to old sessions and revise portions
of the resource requests. If this modified request is to be run on a different queuing system,

then a new script can be generated using the slightly modified context (session) data.

4.3. Job Submission

WebFlow provides a module for executing submission requests either as local commands or as
remote procedures through the rsh and ssh commands. These command are called as external
processes to the JVM running the module. Because WebFlow servers can run on distributed
hosts, the “local” command execution can be performed by a child running directly on the

desired HPC system.

It is possible to provide a closer coupling between WebFlow and the application if the code
or at least the interface is available. Subroutines and functions can be wrapped in IDL and
called through a custom-developed module. In practice, we have not implemented this service

for any codes because we primarily support commercial applications.

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

% THE GATEWAY COMPUTATIONAL WEB PORTAL 13

4.4. Job Monitoring

We provide a rudimentary method for monitoring the status of the user’s job. We do this
through a simple event generating mechanism on the remote HPC, rather than through server-
side polling. Possible event states are “pending”, “queued”, “running”, and “completed”. The
pending state applies to a job that has been described but not yet submitted to a queue.
Support for this state is useful at centers that impose limits on the number of jobs that can
be queued at one time. The queued job has been submitted to a particular host and is waiting
to be executed. The notifications that a job has started to run and has finished (possibly with
an error) are generated by a simple call-back program embedded in the the queue script that
contacts the server and passes the event status. Because we typically support “black box”
commercial codes, we have not implemented support for any internal checkpoint events while
the code is running. All the events associated with a specific user are stored as a serialized
hash table in the user’s descriptor directory.

There are several advantages to using job-generated events in place of server polling. It scales
well, since a single server does not have to periodically ping many running applications. Instead,
the server is notified only when something interesting happens, and this notification is relatively
simultaneous, with no built in lag time inherent to polling. Also, in our implementation the
call-back is decoupled from the servers, so the servers can crash or be shut down and restarted
without affecting the event monitoring. The disadvantage of the scheme is that it assumes that
the HPC system itself and the network connecting it to the servers will remain up. In order to
make monitoring more robust, we need to couple job event monitoring with host and network

monitoring.

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

14 MARLON E. PIERCE, CHOONHAN YOUN, GEOFFREY C. FOX %

4.5. Session State Management

We have implemented a service for archiving interactions with the portal, allowing users to
recover old state information and to recover from a server crash within a user session. This
service, called ContextManager, has been implemented as both a WebFlow module and a web
server JavaBean. There are trade-offs between the two versions: the WebFlow module can be
distributed over multiple machines, but the local-only version has superior performance. The
ContextManager service manages user, problem, and session context hash tables, which are
mapped to a tree of directories on the server(s). The base of each tree is the user context,
with subdirectories for problems and sub-subdirectories for sessions. We refer to this data as
context data. Context data minimally describes the parent and children of a particular node,
but can be extended to include any arbitrary name-value pairs. This is useful for storing, for
instance, HTTP GET or POST requests. In practice we store all information gained from the
user’s interaction with the browser forms. For instance, the user’s request to run a particular
code on a certain host with a specified amount of memory, nodes, and wall time is represented
as a series of name-value pairs that is stored in a directory that is associated with the problem

and session contexts in which the request was created.

5. SECURITY REQUIREMENTS

Security is of utmost importance when grid resources are made available through the Internet.
Security solutions of commercial web sites are typically inadequate for computational grids:

customers and retailers are protected by third parties such as credit card companies and banks,

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

% THE GATEWAY COMPUTATIONAL WEB PORTAL 15

the company sponsoring the site profits from the sale of goods rather than services, and the
site has no need to allow users direct access to its computational resources. None of these

conditions apply to centers running computational portals.

In this section we discuss specific implementation issues for the Gateway portal, as well as

some general security issues faced by portals.

5.1. Security in Multilayered Architectures

Three-tiered web portals require at least two tiers of security: client-server and server-back
end connections must be authenticated, authorized, and made private. In addition, Gateway’s
distributed middle tier introduces the need for security between parent and child WebFlow

servers.

Portals must be compliant with the existing security requirements of the centers where
they are run. Gateway is being deployed in Department of Defense (DoD) computing centers
that require Kerberos[21] for authentication, data transmission integrity, and privacy [22].
Centers also are required to use one-time passwords, created in effect by combining a static
Kerberos password and a six-digit random passcode generated by a token card. Once a user
is authenticated, he or she has access to all host machines at a center and can access other

centers using cross-realm authentication.

We built the Gateway portal on top of the centers’ preexisting security infrastructure. The
key piece to making this possible is the CORBA security service. This is a general service
that supports both Generic Security Service mechanisms (such as Kerberos) and SSL[23].

The goal of CORBA security is to provide a common application interface specification to a

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

16 MARLON E. PIERCE, CHOONHAN YOUN, GEOFFREY C. FOX %

number of different security mechanisms. Different CORBA vendors then choose the security
mechanisms that they wish to support. Our first task then is to find a vendor supporting
Kerberos and modify the WebFlow server to implement the additional security service classes.
We use the secure ORB developed by Adiron Software, LLC [24]. This secure ORB must then

be configured to support the particular requirements and policies of the deployment site.

The client-server connection is the first layer of the portal that must be secured. One
implementation issue that we must face is that static passwords are not allowed and there
is no native support in the security service for accepting the random token number. This
precludes simple deployment based on Kerberos passwords. However, we decided that this
was a solved problem: Kerberos clients are available for most platforms, and the secure ORBs
can be configured to authenticate using a preexisting Kerberos ticket-granting ticket (TGT).
Client applications can thus prove authentication to the kerberized WebFlow master server,

assuming the client has obtained a TGT through a previous, normal Kerberos login.

The distributed WebFlow servers represent the second layer that must be secured. One
challenge here is that the WebFlow servers typically do not run as privileged processes, whereas
Kerberos makes the assumption that kerberized services are run as system level processes.
Practically, this requires the service to have access to a system’s keytab file, which has restricted
access. In implementing kerberized WebFlow servers, we have obtained special keytab files from
the Kerberos administrator that are owned by the application account and which are tied to
a specific host machine. The use of keytab files can be avoided by user-to-user authentication.

This would allow a client and server to both authenticate with TGTs, instead of a TGT

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

% THE GATEWAY COMPUTATIONAL WEB PORTAL 17

and keytab. Although part of the specification, user-to-user authentication is not typically

supported by Kerberos implementations.

WebFlow presents an additional problem to the kerberized ORB. The parent and child
servers act as both client and server at different times, so the WebFlow server must possess
access to a valid Kerberos TGT as well as the keytab. The internal representation of the

Kerberos credential object in the WebFlow server is thus a composition of the two credentials.

WebFlow servers may be run as a regular user account. This allows us to deploy a single
parent server that runs as a gatekeeper and multiple child servers, one for each user. This
scheme presents a simple solution to authorization: the user’s personal server has all the
normal permissions and restrictions as any other process he or she runs. Users may then
make requests to their associated child servers, but the requests are actually intercepted and
invoked by the master server. That is, the parent server acts as the user’s proxy client and
actually invokes the specific request. This requires two security features: mutual authentication
and delegation. Mutual authentication is needed because the WebFlow child server, when it
contacts the master to be dynamically added to the child list, must prove its identity to the
parent. Thus it must authenticate as any other client. Likewise, the parent, in its role as
gatekeeper, will act as client to the child when making invocations. Fortunately, the secure
ORB can be easily configured to use mutual authentication as a policy. Delegation is required
because the initial client request is processed by the master, and so the client must delegate
authority to the master to invoke a command on its behalf. It is possible to implement an

additional safety feature in the gatekeeper that verifies the client has requested access to a

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

18 MARLON E. PIERCE, CHOONHAN YOUN, GEOFFREY C. FOX %

child that it is authorized to use. This can be done by inspecting the credential received from

the client and comparing it to the name associated with the requested child server.

Finally, secure connections to the remote back end machines (such as HPCs or mass storage)
must also be made. To accomplish this, we create the user’s personal server in the middle tier
with a forwardable Kerberos ticket. The server can then contact the remote back end by simply
invoking an external mechanism such as a kerbererized remote shell invocation. This allows
commands to be run on the remote host through the pre-existing, approved remote invocation

method.

5.2. Kerberos Security for Web Applications

One of the difficulties of using Kerberos as an authentication service for web applications is
that it is not compatible with existing browsers. Early implementations of Gateway attempted
to solve this problem by using a Java applet to establish the secure connection and manage
the client requests. This introduced new problems, however, as this required installing native
libraries on the client. We were thus required to override the native browser’s Java Runtime
Environment with a plug-in, but we discovered in turn that this broke the applet-browser

communication capabilities.

As a solution to this problem, we developed the Charon security module. Charon consists
of a client-side proxy application and a WebFlow module that intercept HTTP requests and
responses between the user’s browser and the Apache server. This is illustrated in Figure 8.
A user wishing to connect to the Gateway web site must first get a TGT and then launch

the client Charon application. He can then point his browser to a specified port on his local

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

% THE GATEWAY COMPUTATIONAL WEB PORTAL 19

host. All traffic through this port is forwarded to the Charon server (a module running in the
WebFlow master server), which forwards the request to the local web server. The response is
collected by the Charon server and sent back to the Charon client, which sends it to the local
port. All web traffic uses DES encryption and MDJ5 hashing to preserve message integrity.
These are standard features of SECIOP. Charon thus represents a fully kerberized method for

authenticating HTTP clients and servers.

A drawback to the previous scheme is that it requires some installation on the user’s desktop,
and the dynamically linked native libraries require privileged access before they can be installed
on some machines. As an alternative solution, we provide a browser interface that will create
a Kerberos TGT on the server for the user. The user is authenticated in the usual way, with
password and passcode. After the ticket is created on the server, we use a message digesting
algorithm to create a unique cookie for the browser. This cookie and the client browser’s
IP address are used for future identification. Before the browser can view secured pages,
these two identification pieces are verified against the session values stored on the server.
All wire communications go over 128-bit encrypted SSL connections. Client certificates can
be used as a third means of identification. The user can delete his server-side session tickets
through the browser, and they will also be automatically deleted when the JSP session context
expires. This is currently our preferred security mechanism as it requires no installation and
software upgrades on the client. It also can make use of existing proxy servers to cross firewall

boundaries, requiring no additional development on our part.

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

20 MARLON E. PIERCE, CHOONHAN YOUN, GEOFFREY C. FOX %

The current version of the Gateway system was developed independently of typical grid services
such as Globus, Legion, and Condor, although previous versions incorporated an interface to
Globus job submission tools as an external process. We see an important benefit to providing
a bridge between systems that use standard grid technologies and systems that do not; i.e.
stand-alone HPCs, clusters, private mass storage systems, and databases.

In the next phase of development, we will incorporate grid services available through the
DoD’s testbed implementations of Globus and Condor. We plan to initially develop interfaces
to Condor’s scheduler, and to the information and resource management services provided
by the Globus toolkit. Globus’s Resource Specification Language (RSL) provides a bridge to
different queuing systems that could supplement our batch script generating tools. Likewise,
we would benefit from grid information services such as the Globus MDS. Currently we
maintain application and host information in an XML data record on the web server. The
Grid Commodity Toolkit [25] should make this integration straightforward.

However, it is still important to support resources that do not use Globus tools. For this we
believe that it is vitally important that the Global Grid Forum develop standards for resource
description (based surely on RSL) and specifications for transforming these into batch scripts
for the appropriate queuing systems. Likewise, we see the need for universal descriptions of
information services to be developed, so that the machines running Globus information services

can be integrated with other types of information services running on HPC resources.

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

% THE GATEWAY COMPUTATIONAL WEB PORTAL 21

T

The Gateway portal provides a coarse-grained approach to accessing high performance
computing resources. We have the capability to provide bridges to different grid infrastructure

services, and where required implement these services ourselves.

The primary weakness in our current implementation is the lack of use for standard grid
technologies. These provide much more sophisticated and robust services for job submission,
scheduling, and information management than we have the resources to develop. We also
currently provide no direct way of monitoring the availability of remote resources. An inherent
assumption in our data structure is that remote host machines are always available. Solutions
to these problems are available through other projects, and we plan to take advantage of these

in the near future when the DoD grid testbed becomes available.

Apart from traditional grid services, we plan to integrate support for pre- and post-
processing tools into our portal. An important example of this is remote visualization, which
would give researchers tools for doing preliminary analysis remotely before beginning the time-
consuming task of transferring large data sets to local machines for more intensive analysis.
More broadly, we will investigate problems in grid workflow, which will provide the logic and
mechanisms for linking multiple applications together into a single meta-job. These jobs can
be distributed across many machines and will require data transfer and the ability to handle
success/failure conditions, convergence conditions for applications, and scheduling for remote

resources.

It is also crucial that Gateway stays abreast of commercial developments of standards in web

services. Relevant standards include SOAP[26], WSDL[27], and UDDI[28]. If these protocol

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

22 MARLON E. PIERCE, CHOONHAN YOUN, GEOFFREY C. FOX %

and message-centric commercial models prove viable, they will become important alternatives

to interface-centric technologies such as CORBA.

ACKNOWLEDGEMENTS

This project was funded by the Department of Defense High Performance Computing Modernization
Program through the Programming Environments and Training (PET) Programs at the Aeronautical
Systems Center and Army Research Laboratory Major Shared Resource Centers. Ken Flurchick and
Jan Labanowski of the Ohio Supercomputer Center and Tomasz Haupt of Mississippi State University
were lead developers in earlier versions of this project, and we wish to acknowledge their contributions
to Gateway’s overall design and development. We wish to thank Paul Sotirelis and Kelly Kirk of the
National Center for Supercomputing Applications for their assistance in developing remote Kerberos

login.

REFERENCES

1. The Globus Project.
http://www.globus.org/ [20 July 2001].
2. Legion: A Worldwide Virtual Computer.
http://www.cs.virginia.edu/ legion [20 July 2001].
3. Condor: High Throughput Computing.
http://www.cs.wisc.edu/condor [20 July 2001].
4. Foster I, Kesselman C (Eds.). The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann, 1999.
5. Global Grid Forum.

http://www.gridforum.org [20 July 2001].

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

THE GATEWAY COMPUTATIONAL WEB PORTAL 23

6. HTTP: Hypertext Transfer Protocol

http://www.w3c.org/Protocols [20 July 2001].
7. Hypertext Markup Language Home Page
http://www.w3c.org/MarkUp

8. Extensible Markup Language
http://www.w3.org/XML/ [20 July 2001].

9. Orfali R, Harkey D. Client/Server Programming with Java and CORBA. John Wiley and Sons, 1998.

10. CORBA/IIOP Specification
http://www.omg.org/technology /documents/formal/corba_iiop.htm [20 July 2001].

11. Java 2 SDK, Standard Edition Documentation, Version 1.3.1
http://www.java.sun.com/j2se/1.3/docs/index.html

12. CORBA Security Service
http://www.omg.org/technology/documents/formal /security_service.htm [20 July 2001].

13. Gamma E, Helm R, Johnson R, Vlissides J. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison Wesley 1995.

14. Fields D, Kolb M. Web Development with JavaServer Pages. Manning 2000.

15. Haupt T, Akarsu E, Fox G, Youn C. The Gateway System: Uniform Web Based Access to Remote
Resources. Concurrency: Practice and Ezperience, 2000; 12(8);629-642.

16. Bhatia D, Burzevski V, Camuseva M, Fox G, Furmanski W, Premchandran G. WebFlow—A Visual
Programming Paradigm for Web/Java Based Coarse Grain Distributed Computing.” Concurrency:
Practice and Ezperience, 1997; 9(6);555-577.

17. Akarsu E. Integrated Three-Tier Architecture for High-Performance Commodity Metacomputing. Ph. D.
Dissertation, Syracuse University, 1999.

18. For additional references and presentation materials on Gateway, please see
http://www.gatewayportal.org/Presentations.html.

19. Fox G, Furmanski W. High performance commodity computing. In The Grid: Blueprint for a New
Computing Infrastructure. Foster I, Kesselman C (eds.). Morgan Kauffmann, 1999.

20. XSIL: extensible scientific interchange language.
http://www.cacr.caltech.edu/SDA /xsil/ [20 July 2001].

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

24 MARLON E. PIERCE, CHOONHAN YOUN, GEOFFREY C. FOX %
21. Neuman C, Tso T. Kerberos: an Authentication Service for Computer Networks. IEEE Communications,
1994 32(9):33-38.
22. Department of Defense High Performance Computing Modernization Program Security Issues.
http://www.hpcmo.hpc.mil/Htdocs/Security.
23. SSL 3.0 Specification
http://home.netscape.com/eng/ssl3.
24. Adiron: Secure System Design
http://www.adiron.com.
25. von Laszewski G, Foster I, Gawor J, Lane P. A Java Commodity Grid Kit. Concurrency and Computation:
Practice and Ezperience 2001; 13,645-662.
26. SOAP Version 1.2
http://www.w3c.org/ TR /soapl2 [20 July 2001]
27. Web Services Description Language (WSDL) 1.1
http://www.w3c.org/TR/wsdl [20 July 2001]
28. Universal Description, Discovery, and Integration of Business for the Web.
http://www.uddi.org [20 July 2001]
Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Egper. 2000; 00:1-7

Prepared using cpeauth.cls

% THE GATEWAY COMPUTATIONAL WEB PORTAL 25

Weh Browser Weh Browser
And And
Client Applications Client Applications

T HTTRS) HTTRS) T

RSH,SSH

HPC+PBS HPC+L SF

Condor Flock Globus Grid

Figure 1. The Gateway computational portal is implemented in a multi-tiered architecture.

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

26 MARLON E. PIERCE, CHOONHAN YOUN, GEOFFREY C. FOX %

Fle_Web bowser _ Submitjob _jo Montor_ FileBrowser _felp |

| et [et |
9 Ddata | § (Y ownioad_test |
&[Movs [tanoor cat
[} marion st [omacus tae ge
[} botioen dat N
wan il Dmnmﬁ leytat
[s aat [w3693 14 308 g
[marten_cone dat & [isin [~
1 1 I
Remate Filesimpyen saavoioen sel | ol Billscatnsomns,_esitatoon sol______|
R .
Dest 1_test/baiicon dats |
il rom ek hosl |
Transfer Files! |

Figure 2. Gateway client applications are contained in the client tool bar. Tools include a file browser

(shown below) and job monitorer. Users also submit jobs directly to the middle tier through the tool

bar.

Copyright © 2000 John Wiley & Sons, Ltd.

Prepared using cpeauth.cls

Concurrency: Pract. Ezper. 2000; 00:1-7

% THE GATEWAY COMPUTATIONAL WEB PORTAL 27

Welcome to the

Gateway Computational Science Portal
Sy Pot & ool fr nformatn
mm' ”’t:;l' WMWMM Fot more
Code Selection Problem Archive Portal Admiistration
frorabny “m m mmmumm
%"?‘m‘._,..w ot o e walR

= o o

Figure 3. Gateway’s “Welcome” page offers users three basic tracks: code selection for beginning new

problems, problem archive access, and portal administration.

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

28 MARLON E. PIERCE, CHOONHAN YOUN, GEOFFREY C. FOX

e

Adminigtrative
Servlet
Forward Submit
Command Command
-
Command
Interface

Figure 4. An administrative servlet controls flow between pages. The JavaServer Page sends its request

to the servlet and specifies the command to execute. This command could be a simple redirect to

the next page (Forward Command) or could encapsulate additional actions (such as the Submit

Command). All command classes implement a common interface.

Copyright © 2000 John Wiley & Sons, Ltd.

Prepared using cpeauth.cls

Concurrency: Pract. Ezper. 2000; 00:1-7

% THE GATEWAY COMPUTATIONAL WEB PORTAL 29

for Youwill be able 1o old
P T e e e
m!m Probled
and host machine from the following list of applications. made our choice, click
nwwmmmamm " s
* Ganess
v dev02003 s bpe il
v b3~ 1 anc o il
® Gamsln
v w2003 avc by mil
s pel3-1. s e mil

Figure 5. Gateway’s “Code Selection” page allows users to choose from different applications available

from different hosts. The page is dynamically generated from XML data descriptors.

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

30 MARLON E. PIERCE, CHOONHAN YOUN, GEOFFREY C. FOX %

WebFlow
Parent Server

#le)

User Contexts

&

0a

Child Server A

Proxy Images

QO
00O

Child Server B

v

Figure 6. WebFlow servers are organized in a container hierarchy. A parent server maintains proxy

images of its two child servers, A and B. The child servers each contain a user context (container)

that holds several modules each.

Copyright © 2000 John Wiley & Sons, Ltd.

Prepared using cpeauth.cls

Concurrency: Pract. Ezper. 2000; 00:1-7

% THE GATEWAY COMPUTATIONAL WEB PORTAL 31

Script Generator

Superclass
e 1
| PBS LSF GRD [
| Script Script Script ‘
‘ Generator Generator Generator |

Figure 7. Scripts for particular queuing systems are generated on request from a calling JavaServer
Page. A factory JavaBean creates an instance of the appropriate script generator. All script generators

extend a common parent.

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

32 MARLON E. PIERCE, CHOONHAN YOUN, GEOFFREY C. FOX %

| | | |
\ \
: \ : Web Server \
| And |
: E | : Serviet Engine | |
| | | |
.|| Browser | ‘ T HTTP |
| | | |
| iHﬂP(S) | oy |
\ \
\ . ! \ Charon \
| Charon Client ‘ Module \
‘ | SECIOF |
\ \ | | WebFlow Server | |
\ \
S J — J
Desktop Client Remote Server

Figure 8. The Charon security module is used to tunnel HTTP requests over a secure CORBA wire

protocol.

Copyright © 2000 John Wiley & Sons, Ltd. Concurrency: Pract. Ezper. 2000; 00:1-7

Prepared using cpeauth.cls

