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Abstract— Social media data analysis demonstrates two special 
characteristics in Big Data processing. First, most analyses focus 
on data subsets related to specific social events or activities, 
instead of the whole data set. Second, analysis workflows consist 
of multiple stages, and algorithms applied in each stage may use 
different computation and communication patterns suitable for 
different processing frameworks. This paper presents our 
efforts in supporting the data storage and processing 
requirements brought by such characteristics. In order to 
achieve efficient evaluation of queries about target data subsets, 
we propose a general customizable and scalable indexing 
framework that can be built over distributed NoSQL databases. 
This framework allows users to define customized index 
structures that are most suitable for their query patterns against 
social media data, and supports scalable indexing of both 
historical and streaming data. We implement this framework 
using HBase as the storage substrate, and name it 
IndexedHBase. Starting from IndexedHBase, we build a 
distributed analysis stack based on YARN to support analysis 
algorithms using different processing frameworks, such as 
Hadoop MapReduce, Harp, and Giraph. This analysis stack is 
used to support the Truthy social media data observatory, and 
our experience shows that the customized index structures are 
not only useful in efficient query evaluation, but also valuable in 
supporting post-query analysis tasks. Performance tests show 
that our solutions outperform implementations using both 
direct raw data scans and current indexing mechanisms in 
existing NoSQL databases. 
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I.  INTRODUCTION 

As data intensive applications evolve, many research 
projects involving Big Data require efficient extraction and 
analysis of specific data subsets, rather than the whole dataset. 
Social media data analysis is one such example. While social 
media platforms such as Twitter provide tremendous data 
about people’s social life, most research analyses only focus 
on data subsets related to specific social events or social 
activities: congressional elections [6], protest events [4], etc. 
Compared with the sheer size of the entire dataset at TB or PB 
level, the subsets are normally smaller by orders of magnitude. 
For such research scenarios, limiting analysis computation to 
the exact scope of the target subsets is important in terms of 
both efficiency and better resource utilization. Therefore, 
mechanisms for quickly locating the relevant data subsets are 
needed on the data storage layer. 

Another important characteristic of social media data 
analysis is that the analysis workflows normally consist of 
multiple stages, and each stage may apply a diversity of 
algorithms to process the target data subsets, as illustrated in 
Figure 1. Different algorithms may demonstrate different 
computation and communication patterns that are suitable for 
different processing frameworks. Therefore, to achieve 
efficient overall execution of the workflow, the analysis stack 
must be able to adapt to alternate processing frameworks to 
complete various steps from these stages. 

 
Figure 1.  Stages in a social media data analysis process. 

To address these challenges, this paper proposes a general 
customizable indexing framework that can be built over 
scalable distributed NoSQL databases. With this framework, 
users can define index structures that contain customized 
information about the original social media data, so as to 
achieve efficient evaluation of queries about interesting social 
events and activities. By choosing proper mappings between 
the abstract index structures and the storage units provided by 
the underlying NoSQL database, efficient indexing of 
historical and streaming data can be achieved. We implement 
this framework on HBase [3], and release it as an open source 
project IndexedHBase [15]. We extend IndexedHBase to 
build an analysis stack based on YARN [23], which is 
specially designed for dynamic scheduling of multiple 
analysis tasks using different parallel processing frameworks 
in a shared environment. This analysis stack is used to support 
the Truthy social media data observatory [16], and we have 
developed multiple parallel algorithms as basic building 
blocks for constructing analysis workflows. Our experience 
shows that the customized indices are valuable for developing 
both efficient query evaluation strategies and various post-
query analysis algorithms. 

The rest of this paper is organized as follows. Section 2 
explains the abstract data model and index structure of our 
customizable indexing framework, and describes our 
implementation on HBase. Section 3 tests our architecture 
with the Truthy application. Section 4 gives the performance 
evaluation results of some typical queries and analysis tasks. 
Section 5 discusses related work. Section 6 concludes and 
discusses potential future work. 



II. CUSTOMIZABLE INDEXING FRAMEWORK 

A. Input Data Model 

The customizable indexing framework uses the concept of 
data record and record set to model the input data to be 
indexed. A record set is composed of zero to multiple data 
records. Each data record can be modeled by a JSON type 
of nested key-value pair list data structure uniquely identified 
by an “id” field, as shown in Figure 2. These concepts can be 
easily mapped to the data storage units of various NoSQL 
databases. For example, a record set can be implemented as 
a table in HBase [3], a bucket in Riak [21], or a collection in 
MongoDB [17]. Correspondingly, a data record can be 
implemented as a row in HBase, an object in Riak, or a 
document in MongoDB. 

 
Figure 2.  An example of nested 
data model for input data records. 

Figure 3.  Abstract index structure. 

B. Abstract Index Structure 

Figure 3 illustrates the abstract index structure used by our 
framework. The overall structure is organized by a sorted list 
of index keys, and each index key can be associated with a 
varied number of index entries. Each index entry contains a 
unique entry ID, and a varied number of entry fields for 
embedding additional information about the indexed data. 
Index entries are sorted by entry IDs. This structure is 
similar to the posting lists used in inverted indices [25], but 
the major difference is that our framework allows users to 
customize what to use as index keys, entry IDs, and entry 
fields through an index configuration file, as illustrated in 
Figure 4. Users can also define their own functions (UDFs) 
for generating index keys and entries for a given data record. 
By using proper index configurations or UDFs, it is possible 
to create various index structures, such as single dimensional 
index, multi-dimensional index, inverted index for text 
retrieval, or even the geospatial index described in [18]. 

 
Figure 4.  An example index configuration file. 

C. Interface to Client Applications 

Figure 5 presents the major operations provided by our 
customizable indexing framework to client applications. The 

client application can use a general customizable indexer to 
index or un-index a data record. The general customizable 
indexer analyzes the index configuration file and generates 
index entries for the data record, invoking a user-defined 
indexer if necessary. Then the insertion or deletion of index 
entries is translated into data operations supported by the 
underlying NoSQL storage substrate for real execution. To 
complete a search using an index structure, the client 
application can invoke a basic index operator provided by 
the framework, or a user defined index operator. Multiple 
constraints can be specified as parameters to filter the index 
entries by their keys, entry IDs, or entry fields. Constraint 
types currently supported are value set constraint, range 
constraint, and regular expression constraint. 

 
Figure 5.  Interface to client applications. 

D. Implementation on HBase 

The customizable indexing framework can be 
implemented on different NoSQL databases through proper 
mappings between the abstract index structure and the storage 
functionality provided by the NoSQL database. Considering 
the requirement of scalable real-time indexing for streaming 
data, the mapping must be carefully designed to support 
efficient updates to single index entries. Our current 
implementation uses HBase as the storage substrate. 
Specifically, we use an HBase table to implement an index 
structure, a row key for an index key, a column name for an 
entry ID, and a column value for all the entry fields. Since 
HBase stores table data under the hierarchical order of <row 
key, column name, timestamp>, it is easy to support range 
scans over the index keys or entry IDs. Moreover, based on 
the region split and load balancing mechanisms provided by 
HBase, we are able to achieve efficient and scalable real-time 
indexing of streaming data. 

III. CASE STUDIES WITH TRUTHY 

Truthy is a social media data observatory [16] designed for 
analysis and visualization of information diffusion on Twitter. 
It collects data through the Twitter streaming API [22]. The 
current total size of historical data in the format of .json.gz 
files is more than 10 terabytes. The data rate coming out of the 
dynamic stream is in the range of 45-50 million tweets per 
day. Tweets come in the form of structured JSON strings that 
contain information about users, their tweets, and the 
“retweet” relationship among tweets. 

Truthy uses the concept of “meme” to represent a set of 
related posts corresponding to a specific discussion topic, 
communication channel, or social event/activity. Memes can 
be identified through elements contained in the text of tweets. 
These include keywords, hashtags (e.g. #euro2012), user-
mentions (e.g. @youtube), and URLs. Most analysis 
workflows start with queries about memes [12], e.g. get-



mention-edges(memes, time-window). Here memes is a list of 
meme identifiers such as hashtags, and time-window is given 
as a pair of time points like [2012-06-08T00:00:00, 2012-06-
23T23:59:59]. This query first finds all the tweets containing 
the given meme identifiers within the time-window, and then 
extracts all the user-mention edges contained in these tweets. 
These edges as a whole construct a user-mention network for 
the given memes, representing a typical pattern of information 
diffusion on social networks. 

We test IndexedHBase with the Truthy queries, 
designing a set of multi-dimensional index structures. Figure 
6 illustrates one of them. This structure indexes both text and 
non-text data fields, but does not store any frequency or 
position information about the indexed terms. This is because 
the Truthy queries are not designed for retrieving the top-N 
most related documents, but for extracting information such 
as user-mention networks from all related social updates. To 
the best of our knowledge, this index structure is not currently 
supported by any existing NoSQL databases. 

 
Figure 6.  Example data and index tables designed for Truthy. 

To achieve efficient execution of analysis workflows in 
Truthy, we upgraded our previous analysis stack in [13] to a 
new one based on YARN [23], as shown in Figure 7. The 
Indexing Module provides efficient and scalable customized 
index building for both streaming and historical data. The 
Query Analysis Engine completes queries about interesting 
data subsets through the usage of index operators, and 
dynamically invokes different parallel processing frameworks 
to execute analysis tasks over the query results. 

 
Figure 7.  Architecture of data analysis stack based on YARN. 

Based on this analysis stack, we developed the following 
building blocks wrapped up with shell scripts for constructing 
analysis workflows: 

A two-phase parallel query evaluation strategy for all 
the queries used in Truthy, as described in [12]. 

A parallel related hashtag mining algorithm 
implemented with Hadoop MapReduce [2], as described in 
[13]. The advantage of this algorithm is that it only uses a 
small portion of the original data, and relies on the indices to 
complete the major part of computation. Since the size of 
index data is significantly smaller, this algorithm is much 
faster than a solution based on original data scanning. 

A parallel algorithm for generating the daily 
frequencies of all hashtags during a given time window. This 
is useful for many analysis purposes, such as generation of 
meme evolution timelines [4] and meme lifetime distribution 
[24]. Considering the schema of “Meme Index Table” in 
Figure 6, it is obvious that this can be done by solely scanning 
the index, without touching any original data. The algorithm 
is implemented as a Hadoop MapReduce program. Each 
mapper takes one region of the “Meme Index Table” as input, 
and generates the daily frequencies for each hashtag by going 
through the corresponding row and doing simple counting. 

An iterative MapReduce implementation of the 
Fruchterman-Reingold algorithm [11] for graph layout 
generation. This algorithm is useful in visualizing many social 
network structures, such as retweet networks and user-
mention networks. We have upgraded the implementation in 
[13] to a new implementation on Harp [14], the new YARN-
compatible version of Twister [9]. 

In addition, a parallel version of the label propagation 
algorithm [19] using Giraph [1] is under development. 

IV. PERFORMANCE EVALUATION 

This section presents the results of several important 
performance evaluation tests, which clearly demonstrate that 
our customizable index structures can greatly improve the 
efficiency of query evaluation and analysis tasks in Truthy. 
All tests are done on a private eight-node cluster. The 
hardware configuration of each node is listed in Table I. Each 
node runs RHEL 6.5 and Java 1.7.0_45. For the deployment 
of YARN and IndexedHBase, Hadoop 2.2.0 and HBase 0.96.0 
are used. For the deployment of Riak, each node runs Riak 
1.2.1, using LevelDB as the storage backend. 

TABLE I.  HARDWARE CONFIGURATION OF EACH NODE 

CPU RAM Hard Disk Network 

4 * 4 Quad-Core AMD 
Opteron 8356 2.3G Hz 

16GB 4 TB 1Gb Ethernet 

Figure 8 shows the performance comparison of three 
query evaluation strategies for a typical query in Truthy. The 
Hadoop-FS strategy uses a MapReduce program to scan the 
.json.gz files (one file for each day), and process the matched 
tweets to complete query. Riak represents a strategy using the 
text indices with “inline fields” supported by Riak, as 
described in [12]. The results clearly demonstrate that 
IndexedHBase is significantly faster than the other two 
strategies. Furthermore, the difference between Riak and 
IndexedHBase gets bigger as the time window gets longer, 
suggesting that IndexedHBase is especially good at queries 
with large intermediate data and result sizes. 

Figure 9 compares the performance of our solutions on 
IndexedHBase against two Hadoop-FS implementations in 
completing two analysis tasks. The first task mines related 
hashtags for “#p2” using data between 2012-09-24 and 2012-
11-06. The second task generates daily meme frequencies of 
all hashtags for 2012-06. The Hadoop-FS implementations 
use MapReduce programs to scan the corresponding files and 
generate the results. Again, our solutions are significantly 
faster by factors of ten. More importantly, this comparison 



clearly demonstrates the value of indices in supporting 
analysis tasks beyond the basic queries. 

 
Figure 8.  Results for query 

evaluation tests. 
Figure 9.  Results for analysis 

task performance tests. 

V. RELATED WORK 

For more details about the query evaluation strategy and 
indexing performance of IndexedHBase, as well as 
reproducing Truthy workflows, please refer to [12] and [13]. 

DataStax (Cassandra) [5], MongoDB [17] and Riak [21] 
are other examples of distributed NoSQL databases with their 
own indexing mechanisms. As discussed in section II, our 
customizable indexing framework can be implemented on 
these systems to extend their existing indexing functionality. 

Hadoop++ [7], HAIL [8], and Eagle-Eyed Elephant [10] 
are systems that try to extend Hadoop [2] with indexing 
mechanisms to facilitate MapReduce queries. However, they 
schedule MapReduce tasks based on data blocks or splits on 
HDFS, and tasks may have to scan irrelevant data during 
query evaluation. In contrast, our framework does indexing 
on the data record level, and query and analysis tasks only 
need to access relevant data records to produce the result. 

VI. CONCLUSIONS AND FUTURE WORK 

Three major conclusions can be drawn from our 
experience in this project. First, to achieve the optimal query 
evaluation performance for different domain applications, 
index structures should be customizable rather than static. 
Second, indexing is valuable for not only query evaluation, 
but also analysis and mining tasks. Finally, an extendable 
analysis stack that can dynamically adopt different processing 
frameworks to handle different tasks is crucial for efficient 
execution of social media data analysis workflows. 

There are two major directions that we can work on in the 
future. First, it will be interesting to extend our customizable 
indexing framework to other NoSQL databases and compare 
the performance with IndexedHBase. Second, we will try to 
further explore the value of indices in supporting analysis 
algorithms for streaming data. 
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