
1

High Performance Parallel Computing with Cloud and Cloud

Technologies

Jaliya Ekanayake
1,2

, Xiaohong Qiu
1
, Thilina Gunarathne

1,2
, Scott Beason

1
, Geoffrey Fox

1,2

1
Pervasive Technology Institute,

2
School of Informatics and Computing,

Indiana University

{jekanaya, xqiu, tgunarat, smbeason, gcf}@indiana.edu

Abstract

We present our experiences in applying, developing, and evaluating cloud and cloud

technologies. First, we present our experience in applying Hadoop and DryadLINQ to a series of

data/compute intensive applications and then compare them with a novel MapReduce runtime

developed by us, named CGL-MapReduce, and MPI. Preliminary applications are developed for

particle physics, bioinformatics, clustering, and matrix multiplication. We identify the basic

execution units of the MapReduce programming model and categorize the runtimes according to

their characteristics. MPI versions of the applications are used where the contrast in performance

needs to be highlighted. We discuss the application structure and their mapping to parallel

architectures of different types, and look at the performance of these applications. Next, we

present a performance analysis of MPI parallel applications on virtualized resources.

1. Introduction

Cloud and cloud technologies are two broad categories of technologies related to the general

notion of Cloud Computing. By “Cloud,” we refer to a collection of infrastructure services such

as Infrastructure-as-a-service (IaaS), Platform-as-a-Service (PaaS), etc., provided by various

organizations where virtualization plays a key role. By “Cloud Technologies,” we refer to

2

various cloud runtimes such as Hadoop(ASF, core, 2009), Dryad (Isard, Budiu et al. 2007), and

other MapReduce(Dean and Ghemawat 2008) frameworks, and also the storage and

communication frameworks such as Hadoop Distributed File System (HDFS), Amazon

S3(Amazon 2009), etc.

The introduction of commercial cloud infrastructure services such as Amazon EC2,

GoGrid(ServePath 2009), and ElasticHosts(ElasticHosts 2009) has allowed users to provision

compute clusters fairly easily and quickly, by paying a monetary value for the duration of their

usages of the resources. The provisioning of resources happens in minutes, as opposed to the

hours and days required in the case of traditional queue-based job scheduling systems. In

addition, the use of such virtualized resources allows the user to completely customize the

Virtual Machine (VM) images and use them with root/administrative privileges, another feature

that is hard to achieve with traditional infrastructures. The availability of open source cloud

infrastructure software such as Nimbus(Keahey, Foster et al. 2005) and Eucalyptus(Nurmi,

Wolski et al. 2009), and the open source virtualization software stacks such as Xen

Hypervisor(Barham, Dragovic et al. 2003), allows organizations to build private clouds to

improve the resource utilization of the available computation facilities. The possibility of

dynamically provisioning additional resources by leasing from commercial cloud infrastructures

makes the use of private clouds more promising.

Among the many applications which benefit from cloud and cloud technologies, the

data/compute intensive applications are the most important. The deluge of data and the highly

compute intensive applications found in many domains such as particle physics, biology,

chemistry, finance, and information retrieval, mandate the use of large computing infrastructures

and parallel processing to achieve considerable performance gains in analyzing data. The

3

addition of cloud technologies creates new trends in performing parallel computing. An

employee in a publishing company who needs to convert a document collection, terabytes in

size, to a different format can do so by implementing a MapReduce computation using Hadoop,

and running it on leased resources from Amazon EC2 in just few hours. A scientist who needs to

process a collection of gene sequences using CAP3(Huang and Madan 1999) software can use

virtualized resources leased from the university’s private cloud infrastructure and Hadoop. In

these use cases, the amount of coding that the publishing agent and the scientist need to perform

is minimal (as each user simply needs to implement a map function), and the MapReduce

infrastructure handles many aspects of the parallelism.

Although the above examples are successful use cases for applying cloud and cloud

technologies for parallel applications, through our research, we have found that there are

limitations in using current cloud technologies for parallel applications that require complex

communication patterns or require faster communication mechanisms. For example, Hadoop and

Dryad implementations of Kmeans clustering applications which perform an iteratively refining

clustering operation, show higher overheads compared to implementations of MPI or CGL-

MapReduce (Ekanayake, Pallickara et al. 2008) – a streaming-based MapReduce runtime

developed by us. These observations raise questions: What applications are best handled by

cloud technologies? What overheads do they introduce? Are there any alternative approaches?

Can we use traditional parallel runtimes such as MPI in cloud? If so, what overheads does it

have? These are some of the questions we try to answer through our research.

In section 1, we give a brief introduction of the cloud technologies, and in section 2, we

discuss with examples the basic functionality supported by these cloud runtimes. Section 3

discusses how these technologies map into programming models. We describe the applications

4

used to evaluate and test technologies in section 4. The performance results are in section 5. In

section 6, we present details of an analysis we have performed to understand the performance

implications of virtualized resources for parallel MPI applications. Note that we use MPI running

on non virtual machines in section 5 for comparison with cloud technologies. We present our

conclusions in section 7.

2. Cloud Technologies

The cloud technologies such as MapReduce and Dryad have created new trends in parallel

programming. The support for handling large data sets, the concept of moving computation to

data, and the better quality of services provided by the cloud technologies make them favorable

choice of technologies to solve large scale data/compute intensive problems.

 The granularity of the parallel tasks in these programming models lies in between the fine

grained parallel tasks that are used in message passing infrastructures such as PVM(Dongarra,

Geist et al. 1993) and MPI(Forum n.d.) ; and the coarse grained jobs in workflow frameworks

such as Kepler(Ludscher, Altintas et al. 2006) and Taverna(Hull, Wolstencroft et al. 2006), in

which the individual tasks could themselves be parallel applications written in MPI. Unlike the

various communication constructs available in MPI which can be used to create a wide variety of

communication topologies for parallel programs, in MapReduce, the “map->reduce” is the only

communication construct available. However, our experience shows that most composable

applications can easily be implemented using the MapReduce programming model. Dryad

supports parallel applications that resemble Directed Acyclic Graphs (DAGs) in which the

vertices represent computation units, and the edges represent communication channels between

different computation units.

In traditional approaches, once parallel applications are developed, they are executed on

5

compute clusters, super computers, or Grid infrastructures (Foster 2001), where the focus on

allocating resources is heavily biased by the availability of computational power. The application

and the data both need to be moved to the available computational resource in order for them to

be executed. These infrastructures are highly efficient in performing compute intensive parallel

applications. However, when the volumes of data accessed by an application increases, the

overall efficiency decreases due to the inevitable data movement. Cloud technologies such as

Google MapReduce, Google File System (GFS) (Ghemawat, Gobioff et al. 2003), Hadoop and

Hadoop Distributed File System (HDFS), Microsoft Dryad, and CGL-MapReduce adopt a more

data-centered approach to parallel runtimes. In these frameworks, the data is staged in

data/compute nodes of clusters or large-scale data centers, such as in the case of Google. The

computations move to the data in order to perform the data processing. Distributed file systems

such as GFS and HDFS allow Google MapReduce and Hadoop to access data via distributed

storage systems built on heterogeneous compute nodes, while Dryad and CGL-MapReduce

support reading data from local disks. The simplicity in the programming model enables better

support for quality of services such as fault tolerance and monitoring.

2.1 Hadoop

Apache Hadoop has a similar architecture to Google’s MapReduce runtime, where it

accesses data via HDFS, which maps all the local disks of the compute nodes to a single file

system hierarchy, allowing the data to be dispersed across all the data/computing nodes. HDFS

also replicates the data on multiple nodes so that failures of any nodes containing a portion of the

data will not affect the computations which use that data. Hadoop schedules the MapReduce

computation tasks depending on the data locality, improving the overall I/O bandwidth. The

outputs of the map tasks are first stored in local disks until later, when the reduce tasks access

6

them (pull) via HTTP connections. Although this approach simplifies the fault handling

mechanism in Hadoop, it adds a significant communication overhead to the intermediate data

transfers, especially for applications that produce small intermediate results frequently.

2.2 Dryad and DryadLINQ

Dryad is a distributed execution engine for coarse grain data parallel applications. It

combines the MapReduce programming style with dataflow graphs to solve the computation

tasks. Dryad considers computation tasks as directed acyclic graph (DAG)s where the vertices

represent computation tasks and with the edges acting as communication channels over which

the data flow from one vertex to another. The data is stored in (or partitioned to) local disks via

the Windows shared directories and meta-data files and Dryad schedules the execution of

vertices depending on the data locality. (Note: The academic release of Dryad only exposes the

DryadLINQ (Y.Yu, Isard et al. 2008) API for programmers. Therefore, all our implementations

are written using DryadLINQ although it uses Dryad as the underlying runtime). Dryad also

stores the output of vertices in local disks, and the other vertices which depend on these results,

access them via the shared directories. This enables Dryad to re-execute failed vertices, a step

which improves the fault tolerance in the programming model.

2.3 CGL-MapReduce

CGL-MapReduce is a light-weight MapReduce runtime that incorporates several

improvements to the MapReduce programming model such as (i) faster intermediate data

transfer via a pub/sub broker network; (ii) support for long running map/reduce tasks; and (iii)

efficient support for iterative MapReduce computations. The architecture of CGL-MapReduce is

shown in figure 1 (Left).

7

Figure 1. (Left) Components of the CGL-MapReduce. (Right) Different synchronization and intercommunication

mechanisms used by the parallel runtimes.

The use of streaming enables CGL-MapReduce to send the intermediate results directly from

its producers to its consumers, and eliminates the overhead of the file based communication

mechanisms adopted by both Hadoop and Dryad. The support for long running map/reduce tasks

enables configuring and re-using of map/reduce tasks in the case of iterative MapReduce

computations, and eliminates the need for the re-configuring or the re-loading of static data in

each iteration. This feature comes with the distinction of “static data” and the “dynamic data”

that we support in CGL-MapReduce. We refer to any data set which is static throughout the

computation as “static data,” and the data that is changing over the computation as “dynamic

data.” Although this distinction is irrelevant to the MapReduce computations that have only one

map phase followed by a reduce phase, it is extremely important for iterative MapReduce

computations, in which the map tasks need to access a static (fixed) data again and again. Figure

1 (Right) highlights the synchronization and communication characteristics of Hadoop, Dryad,

CGL-MapReduce, and MPI.

Additionally, CGL-MapReduce supports the distribution of smaller variable data sets to all

the map tasks directly, a functionality similar to MPI_Bcast() that is often found to be useful in

8

many data analysis applications. Hadoop provides a similar feature via its distributed cache, in

which a file or data is copied to all the compute nodes. Dryad provides a similar feature by

allowing applications to add resources (files) which will be accessible to all the vertices. With

the above features in place, CGL-MapReduce can be used to implement iterative MapReduce

computations efficiently. In CGL-MapReduce, the data partitioning and distribution is left to the

users to handle, and it reads data from shared file systems or local disks. Although the use of

streaming makes CGL-MapReduce highly efficient, implementing fault tolerance with this

approach is not as straightforward as it is in Hadoop or Dryad. We plan to implement fault

tolerance in CGL-MapReduce by re-executing failed map tasks and redundant execution of

reduce tasks.

2.4 MPI

MPI, the de-facto standard for parallel programming, is a language-independent

communications protocol that uses a message-passing paradigm to share the data and state

among a set of cooperative processes running on a distributed memory system. MPI specification

(Forum, MPI) defines a set of routines to support various parallel programming models such as

point-to-point communication, collective communication, derived data types, and parallel I/O

operations.

Most MPI runtimes are deployed in computation clusters where a set of compute nodes are

connected via a high-speed network connection yielding very low communication latencies

(typically in microseconds). MPI processes typically have a direct mapping to the available

processors in a compute cluster or to the processor cores in the case of multi-core systems.. We

use MPI as the baseline performance measure for the various algorithms that are used to evaluate

the different parallel programming runtimes. Table 1 summarizes the different characteristics of

9

Hadoop, Dryad, CGL-MapReduce, and MPI.

Table 1. Comparison of features supported by different parallel programming runtimes.

Feature Hadoop Dryad CGL-MapReduce MPI

Programming

Model

MapReduce DAG based execution

flows

MapReduce with a

Combine phase

Variety of

topologies

constructed using

the rich set of

parallel

constructs

Data Handling HDFS Shared directories/

Local disks

Shared file system /

Local disks

Shared file

systems

Intermediate

Data

Communication

HDFS/

Point-to-point via

HTTP

Files/TCP pipes/

Shared memory FIFO

Content Distribution

Network

(NaradaBrokering

(Pallickara and Fox

2003))

Low latency

communication

channels

Scheduling Data locality/

Rack aware

Data locality/ Network

topology based run

time graph

optimizations

Data locality Available

processing

capabilities

Failure

Handling

Persistence via HDFS

Re-execution of map

and reduce tasks

Re-execution of

vertices

Currently not

implemented

(Re-executing map tasks,

redundant reduce tasks)

Program level

Check pointing

OpenMPI

(Gabriel, E.,
G.E. Fagg, et

al. 2004), FT

MPI

Monitoring Monitoring support of

HDFS, Monitoring

MapReduce

computations

Monitoring support for

execution graphs

Programming interface

to monitor the progress

of jobs

Minimal support

for task level

monitoring

Language

Support

Implemented using

Java. Other languages

are supported via

Hadoop Streaming

Programmable via C#

DryadLINQ provides

LINQ programming

API for Dryad

Implemented using Java

Other languages are

supported via Java

wrappers

C, C++, Fortran,

Java, C#

3. Programming models

When analyzing applications written in the MapReduce programming model, we can identify

three basic execution units wiz: (i) map-only; (ii) map-reduce; and (iii) iterative-map-reduce.

Complex applications can be built by combining these three basic execution units under the

MapReduce programming model. Table 2 shows the data/computation flow of these three basic

execution units, along with examples.

10

Table 2. Three basic execution units under the MapReduce programming model.

Map-only Map-reduce Iterative map-reduce

Cap3 Analysis (we will discuss more

about this later)

Converting a collection of documents to

different formats, processing a collection

of medical images, and brute force

searches in cryptography

Parametric sweeps

HEP data analysis (we will

discuss more about this later)

Histogramming operations,

distributed search, and

distributed sorting

Information retrieval

Expectation maximization

algorithms

Kmeans clustering

Matrix multiplication

In the MapReduce programming model, the tasks that are being executed at a given phase

have similar executables and similar input and output operations. With zero reduce tasks, the

MapReduce model reduces to a map-only model which can be applied to many “embarrassingly

parallel” applications. Software systems such as batch queues, Condor(Condor 2009), Falkon

(Raicu, Zhao et al. 2007) and SWARM (Pallickara and Pierce 2008) all provide similar

functionality by scheduling large numbers of individual maps/jobs. Applications which can

utilize a “reduction” or an “aggregation” operation can use both phases of the MapReduce model

and, depending on the “associativity” and “transitivity” nature of the reduction operation,

multiple reduction phases can be applied to enhance the parallelism. For example, in a

histogramming operation, the partial histograms can be combined in any order and in any

number of steps to produce a final histogram.

The “side effect free”-nature of the MapReduce programming model does not promote

iterative MapReduce computations. Each map and reduce tasks are considered as atomic

execution units with no state shared in between executions. In parallel runtimes such as those of

the MPI, the parallel execution units live throughout the entire life of the program; hence, the

11

state of a parallel execution unit can be shared across invocations. We propose an intermediate

approach to develop MapReduce computations. In our approach, the map/reduce tasks are still

considered side effect-free, but the runtime allows configuring and re-usage of the map/reduce

tasks. Once configured, the runtime caches the map/reduce tasks. This way, both map and reduce

tasks can keep the static data in memory, and can be called iteratively without loading the static

data repeatedly.

Hadoop supports configuring the number of reduce tasks, which enables the user to create

“map-only” applications by using zero reduce tasks. Hadoop can be used to implement iterative

MapReduce computations, but the framework does not provide additional support to implement

them efficiently. The CGL-MapReduce supports all the above three execution units, and the user

can develop applications with multiple stages of MapReduce by combining them in any order.

Dryad execution graphs resembling the above three basic units can be generated using

DryadLINQ operations. DryadLINQ adds the LINQ programming features to Dryad where the

user can implement various data analysis applications using LINQ queries, which will be

translated to Dryad execution graphs by the compiler. However, unlike in the MapReduce model,

Dryad allows the concurrent vertices to have different behaviors and different input/output

characteristics, thus enabling a more workflow style programming model. Dryad also allows

multiple communication channels in between different vertices of the data flow graph.

Programming languages such as Swazall (Pike, Dorward et al. 2005), introduced by Google for

its MapReduce runtime enables high level language support for expressing MapReduce

computations, and the Pig (ASF, pig, 2009) available as a sub project of Hadoop, allows query

operations on large data sets.

Apart from these programming models, there are other software frameworks that one can use

12

to perform data/compute intensive analyses. Disco (Nokia 2009) is an open source MapReduce

runtime developed using a functional programming language named Erlang (Ericsson 2009).

Disco architecture shares clear similarities with both the Google and the Hadoop MapReduce

architectures. Sphere (Gu and Grossman 2009) is a framework which can be used to execute

user-defined functions in parallel on data stored in a storage framework named Sector. Sphere

can also perform MapReduce style programs, and the authors compare the performance with

Hadoop for tera-sort application. All-Pairs (Moretti, Bui et al. 2009) is an abstraction that can be

used to solve the common problem of comparing all the elements in a data set with all the

elements in another data set by applying a given function. This problem can be implemented

using Hadoop and Dryad as well, and we discuss a similar problem in section 4.4. We can also

develop an efficient iterative MapReduce implementation using CGL-MapReduce to solve this

problem. The algorithm is similar to the matrix multiplication algorithm that we will explain in

section 4.3.

MPI and threads are two other programming models that can be used to implement parallel

applications. MPI can be used to develop parallel applications in distributed memory

architectures whereas threads can be used in shared memory architectures, especially in multi-

core nodes. The low level communication constructs available in MPI allows users to develop

parallel applications with various communication topologies involving fine grained parallel

tasks. The use of low latency network connections between nodes enables applications to

perform large number of inter-task communications. In contrast, the next generation parallel

runtimes such as MapReduce and Dryad provide small number of parallel constructs such as

“map-only”, “map-reduce”, “Select”, “Apply”, “Join” etc.., and does not require high speed

communication channels. These constraints require adopting parallel algorithms which perform

13

coarse grained parallel tasks and less communication. The use of threads is a natural approach in

shared memory architectures, where communication between parallel tasks reduces to the simple

sharing of pointers via the shared memory. However, the operating system’s support for user

level threads plays a major role in achieving better performances using multi-threaded

applications. We will discuss the issues in using threads and MPI in more detail in section 5.4.2.

4. Data Analyses Applications

4.1 CAP3 – Sequence Assembly Program

CAP3 is a DNA sequence assembly program developed by Huang and Madan (1999) that

performs several major assembly steps: these steps include computation of overlaps, construction

of contigs, construction of multiple sequence alignments, and generation of consensus sequences

to a given set of gene sequences. The program reads a collection of gene sequences from an input

file (FASTA file format) and writes its output to several output files, as well as the standard

output (as shown below).

Input.fsa -> CAP3 -> Stdout + Other output files

The program structure of this application fits directly with the “Map-only” basic execution

unit, as shown in Table 2. We implemented a parallel version of CAP3 using Hadoop, CGL-

MapReduce, and DryadLINQ. Each map task in Hadoop and in CGL-MapReduce calls the

CAP3 executable as a separate process for a given input data file (the input “Value” for the map

task), whereas in DryadLINQ, a “homomorphic Apply” operation calls the CAP3 executable on

each data file in its data partition as a separate process. All the implementations move the output

files to a predefined shared directory. This application resembles a common parallelization

requirement, where an executable script, or a function in a special framework such as Matlab or

14

R, needs to be executed on each input data item. The above approach can be used to implement

all these types of applications using any of the above three runtimes.

4.2 High Energy Physics

Next, we applied the MapReduce technique to parallelize a High Energy Physics (HEP) data

analysis application, and implemented it using Hadoop, CGL-MapReduce, and Dryad. The HEP

data analysis application processes large volumes of data, and performs a histogramming

operation on a collection of event files produced by HEP experiments. The details regarding the

two MapReduce implementations and the challenges we faced in implementing them can be

found in (Ekanayake, Pallickara et al. 2008). In the DryadLINQ implementation, the input data

files are first distributed among the nodes of the cluster manually. We developed a tool to

perform the manual partitioning and distribution of the data. The names of the data files

available in a given node were used as the data to the DryadLINQ program. Using a

homomorphic “Apply” operation, we executed a ROOT interpreted script on groups of input

files in all the nodes. The output histograms of this operation were written to a pre-defined

shared directory. Next, we used another “Apply” phase to combine these partial histograms into

a single histogram using DryadLINQ.

4.3 Iterative MapReduce – Kmeans Clustering and Matrix Multiplication

Parallel applications that are implemented using message passing runtimes can utilize various

communication constructs to build diverse communication topologies. For example, a matrix

multiplication application that implements Fox's Algorithm (Fox and Hey, 1987) and Cannon’s

Algorithm (Johnsson, Harris et al. 1989) assumes parallel processes to be in a rectangular grid.

Each parallel process in the grid communicates with its left and top neighbors as shown in figure

2 (left). The current cloud runtimes, which are based on data flow models such as MapReduce

15

and Dryad, do not support this behavior, in which the peer nodes communicate with each other.

Therefore, implementing the above type of parallel applications using MapReduce or

DryadLINQ requires adopting different algorithms.

Figure 2. (Left) The communication topology of Cannon’s Algorithm implemented using MPI, (middle)

Communication topology of matrix multiplication application based on MapReduce, and (right) Communication

topology of Kmeans Clustering implemented as a MapReduce application.

We have implemented matrix multiplication applications using Hadoop and CGL-

MapReduce by adopting a row/column decomposition approach to split the matrices. To clarify

our algorithm, let’s consider an example where two input matrices, A and B, produce matrix C,

as the result of the multiplication process. We split the matrix B into a set of column blocks and

the matrix A into a set of row blocks. In each iteration, all the map tasks process two inputs: (i) a

column block of matrix B, and (ii) a row block of matrix A; collectively, they produce a row

block of the resultant matrix C. The column block associated with a particular map task is fixed

throughout the computation, while the row blocks are changed in each iteration. However, in

Hadoop’s programming model (a typical MapReduce model), there is no way to specify this

behavior. Hence, it loads both the column block and the row block in each iteration of the

computation. CGL-MapReduce supports the notion of long running map/reduce tasks where

these tasks are allowed to retain static data in the memory across invocations, yielding better

performance for “Iterative MapReduce” computations. The communication pattern of this

16

application is shown in figure 2 (middle).

Kmeans clustering (Macqueen 1967) is another application that performs iteratively refining

computation. We also implemented Kmeans clustering applications using Hadoop, CGL-

MapReduce, and DryadLINQ. In the two MapReduce implementations, each map task calculates

the distances between all the data elements in its data partition, to all the cluster centers produced

during the previous run. It then assigns data points to these cluster centers, based on their

Euclidian distances. The communication topology of this algorithm is shown in figure 2 (right).

Each map task produces partial cluster centers as the output; these are then combined at a reduce

task to produce the current cluster centers. These current cluster centers are used in the next

iteration, to find the next set of cluster centers. This process continues until the overall distance

between the current cluster centers and the previous cluster centers, reduces below a predefined

threshold. The Hadoop implementation uses a new MapReduce computation for each iteration

of the program, while CGL-MapReduce’s long running map/reduce tasks allows it to re-use

map/reduce tasks. The DryadLINQ implementation uses various DryadLINQ operations such as

“Apply”, “GroupBy”, “Sum”, “Max”, and “Join” to perform the computation, and also, it utilizes

DryadLINQ’s “loop unrolling” support to perform multiple iterations as a single large query.

4.4 ALU Sequencing Studies

4.4.1 ALU Clustering

The ALU clustering problem (Batzer and Deininger 2002) is one of the most challenging

problems for sequence clustering because ALUs represent the largest repeat families in human

genome. There are about 1 million copies of ALU sequences in human genome, in which most

insertions can be found in other primates and only a small fraction (~ 7000) are human-specific.

This indicates that the classification of ALU repeats can be deduced solely from the 1 million

17

human ALU elements. Notable, ALU clustering can be viewed as a classical case study for the

capacity of computational infrastructures because it is not only of great intrinsic biological

interests, but also a problem of a scale that will remain as the upper limit of many other

clustering problem in bioinformatics for the next few years, e.g. the automated protein family

classification for a few millions of proteins predicted from large metagenomics projects.

4.4.2 Smith Waterman Dissimilarities

We identified samples of the human and Chimpanzee ALU gene sequences using

Repeatmasker (Smith and Hubley 2004) with Repbase Update (Jurka 2000). We have been

gradually increasing the size of our projects with the current largest samples having 35339 and

50000 sequences and these require a modest cluster such as Tempest (768 cores) for processing

in a reasonable time (a few hours as shown in section 5). Note from the discussion in section

4.4.1, we are aiming at supporting problems with a million sequences -- quite practical today on

TeraGrid and equivalent facilities given basic analysis steps scale like O(N
2
).

We used open source version NAligner (Smith Waterman Software) of the Smith Waterman

– Gotoh algorithm SW-G (Smith, Waterman et al 1981; Gotoh, 1982) modified to ensure low

start up effects by each thread/processing large numbers (above a few hundred) at a time.

Memory bandwidth needed was reduced by storing data items in as few bytes as possible.

4.4.3 The O(N
2
) Factor of 2 and structure of processing algorithm

 The ALU sequencing problem shows a well known factor of 2 issue present in many O(N
2
)

parallel algorithms such as those in direct simulations of astrophysical stems. We initially

calculate in parallel the Distance D(i,j) between points (sequences) i and j. This is done in

parallel over all processor nodes selecting criteria i < j (or j > i for upper triangular case) to avoid

calculating both D(i,j) and the identical D(j,i). This can require substantial file transfer as it is

18

unlikely that nodes requiring D(i,j) in a later step will find that it was calculated on nodes where

it is needed.

 For example the MDS and PW (PairWise) Clustering algorithms described in Fox, Bae et al.

(2008), require a parallel decomposition where each of N processes (MPI processes, threads) has

1/N of sequences and for this subset {i} of sequences stores in memory D({i},j) for all sequences

j and the subset {i} of sequences for which this node is responsible. This implies that we need D

(i,j) and D (j,i) (which are equal) stored in different processors/disks. This is a well known

collective operation in MPI called either gather or scatter.

4.4.4 Dryad Implementation

We developed a DryadLINQ application to perform the calculation of pairwise SW-G

distances for a given set of genes by adopting a coarse grain task decomposition approach which

requires minimum inter-process communication to ameliorate the higher communication and

synchronization costs of the parallel runtime. To clarify our algorithm, let’s consider an example

where N gene sequences produces a pairwise distance matrix of size NxN. We decompose the

computation task by considering the resultant matrix and groups the overall computation into a

block matrix of size DxD where D is a multiple (>2) of the available computation nodes. Due to

the symmetry of the distances D(i,j) and D(j,i) we only calculate the distances in the blocks of

the upper triangle of the block matrix as shown in figure 3 (left). The blocks in the upper triangle

are partitioned (assigned) to the available compute nodes and an “Apply” operation is used to

execute a function to calculate (N/D)x(N/D) distances in each block. After computing the

distances in each block, the function calculates the transpose matrix of the result matrix which

corresponds to a block in the lower triangle, and writes both these matrices into two output files

in the local file system. The names of these files and their block numbers are communicated back

19

to the main program. The main program sort the files based on their block numbers and performs

another “Apply” operation to combine the files corresponding to a row of blocks in a single large

row block as shown in the figure 3 (right).

Figure 3. Task decomposition (left) and the DryadLINQ vertex hierarchy (right) of the DryadLINQ implementation

of SW-G pairwise distance calculation application.

4.4.5 MPI Implementation

The MPI version of SW-G calculates pairwise distances using a set of either single or multi-

threaded processes. For N gene sequences, we need to compute half of the values (in the lower

triangular matrix), which is a total of M = N x (N-1) /2 distances. At a high level, computation

tasks are evenly divided among P processes and execute in parallel. Namely, computation

workload per process is M/P. At a low level, each computation task can be further divided into

subgroups and run in T concurrent threads. Our implementation is designed for flexible use of

shared memory multicore system and distributed memory clusters (tight to medium tight coupled

communication technologies such threading and MPI). We provide options for any combinations

of thread vs. process vs. node as shown in figure 4. The real computation workload per parallel

unit is decided by M / (T x P x # nodes).

20

Figure 4. Task decomposition (left) and the MPI (right) implementation of SW-G pairwise distance calculation

application.

As illustrated in figure 4, the data decomposition strategy runs a “space filling curve through

lower triangular matrix” to produce equal numbers of pairs for each parallel unit such as process

or thread. It is necessary to map indexes in each pairs group back to corresponding matrix

coordinates (i, j) for constructing full matrix later on. We implemented a special function

"PairEnumertator" as the convertor. We tried to limit runtime memory usage for performance

optimization. This is done by writing a triple of i, j, and distance value of pairwise alignment to a

stream writer and the system flushes accumulated results to a local file periodically. As the final

stage, individual files are merged to form a full distance matrix.

5. Evaluations

5.1 Introduction

For our evaluations, we used three compute clusters (details are shown in Table 3) with two

32-node clusters have almost identical hardware configurations and one latest 32-node cluster of

24 core machines with Infiniband connections. DryadLINQ and the MPI application that

performs SW-G computation were run on the Windows cluster (Ref B, Ref C), while the

Hadoop, CGL-MapReduce, and other MPI applications were run on the Linux cluster (Ref A).

21

We measured the performance of these applications, and present the results in terms of parallel

overhead defined for Parallelism P by

f(P) = [P * T(P) – T(1)] / T(1) (1)

where P denotes parallelism (e.g. processes, threads, map tasks) used, and T denotes time as a

function of the number of parallel processes used. T(1) is replaced in practice by T(S) where S is

the smallest number of processes that can run the job. We used Hadoop release 0.20, the

academic release of DryadLINQ, Microsoft MPI, and OpenMPI version 1.3.2 for our

evaluations.

Table 3. Different computation clusters used for the analyses

Feature Linux Cluster (Ref A) Windows Cluster (Ref B) Windows Cluster (Ref C)

Node 32 32 32

CPU Intel(R) Xeon(R) CPU L5420

2.50GHz

Intel(R) Xeon(R)

CPU L5420 2.50GHz

Intel(R) Xeon(R) CPU E7450

2.40GHz

CPU / #

Cores

2/8 2/8 4/24

Total Cores 256 256 768

Memory 32GB 16 GB 48 GB

Disk 1 Disk of Western Digital

Caviar RE 160 GB SATA 7200

2 Disks of 1000GB (1TB)

Ultrastar A7K1000 7200

2 HP 146GB 10K 2.5 SAS HP

SP HDD

Network Giga bit Ethernet Giga bit Ethernet 20 Gbps Infiniband

Operating

System

Red Hat Enterprise Linux

Server release 5.3 - 64 bit

Windows Server Enterprise -

64 bit

Windows Server 2008 HPC

Edition (Service Pack 1)

5.2 The CAP3 and Particle Physics Case Studies

The results of our performance measurements for CAP3 and Particle Physics are shown in

figures 5-8.

22

Figure 5. Performance of the CAP3 application –

average time (in seconds) against the number of gene

reads processed.

Figure 6. Performance of the HEP data analysis

application – average time (in seconds) against the

amount of input data processed (in Giga bytes).

Figure 7. Overhead induced by different parallel

programming runtimes for the Kmeans Clustering

application – overhead against the number of 2D data

points clustered (Note: Both axes are in log scale)

Figure 8. Overhead induced by different parallel

programming runtimes for the matrix multiplication

application – overhead against the dimension of an input

matrix.

From these results, it is clearly evident that the cloud runtimes perform competitively well

for both the “Map-only” and the “Map-reduce” style applications. In the HEP data analysis, both

the CGL-MapReduce and DryadLINQ access input data from local disks, where the data is

partitioned and distributed beforehand. Currently, HDFS can be accessed using Java or C++

clients only, and the ROOT – data analysis framework developed at CERN- interpretable scripts

are not capable of accessing data from HDFS. Therefore, we placed the input data in the IU Data

Capacitor – a high performance parallel file system based on the Lustre file system, which allows

each map task in Hadoop to directly access data from this file system. The performance results

shows that this dynamic data movement in the Hadoop implementation incurred considerable

overhead to the computation, while the ability of reading input data from local disks gave

significant performance improvement to both DryadLINQ and CGL-MapReduce, as compared to

the Hadoop implementation.

5.3 Kmeans and Matrix Multiplication Case Studies

For iterative class of applications, cloud runtimes show considerably high overheads,

23

compared to the MPI and CGL-MapReduce versions of the same applications; the results shown

in figures 7 and 8 imply that, for these types of applications, we still need to use high

performance parallel runtimes or use alternative approaches. (Note: The negative overheads

observed in the matrix multiplication application are due to the better utilization of a cache by

the parallel application than the single process version). CGL-MapReduce shows a close

performance closer to the MPI for large data sets in the case of Kmeans clustering and matrix

multiplication applications, an outcome which highlights the benefits of supporting iterative

computations and the faster data communication mechanism present in the CGL-MapReduce.

5.4 ALU Sequence Analysis Case Study

5.4.1 Performance of Smith Waterman Gotoh SW-G Algorithm

We performed the Dryad and MPI implementations of ALU SW-G distance calculations on

two large data sets and obtained the following results.

Table 4 Comparison of DryadLINQ and MPI technologies on ALU sequencing application with SW-G algorithm

Technology Total Time

(seconds)

Time per Pair

(milliseconds)

Partition Data

(seconds)

Calculate and

Output

Distance(seconds)

Merge files

(seconds)

Dryad 50,000 sequences 17200.413 0.0069 2.118 17104.979 93.316

35,339 sequences 8510.475 0.0068 2.716 8429.429 78.33

MPI 50,000 sequences 16588.741 0.0066 N/A 13997.681 2591.06

35,339 sequences 8138.314 0.0065 N/A 6909.214 1229.10

There is a short partitioning phase for DryadLINQ and then both approaches calculate the

distances and write out these to intermediate files as discussed in section 4. We note that merge

time is currently much longer for MPI than DryadLINQ while the initial steps are significantly

faster for MPI. However the total times in table 4 indicates that both MPI and DryadLINQ

implementations perform well for this application with MPI a few percent faster with current

implementations. As expected, the times scale proportionally to the square of the number of

24

distances. On 744 cores the average time of 0.0067 milliseconds per pair that corresponds to

roughly 5 milliseconds per pair calculated per core used. The coarse grained Dryad application

performs competitively with the tightly synchronized MPI application. It proves once more the

applicability of the Cloud technologies for the composable applications.

5.4.2 Threaded Implementation

 Above we looked at using MPI with one process per core and we compared this with a

threaded implementation with each process having several threads. Labeling configuration as t x

m x n for t threads per process, m MPI processes per node and n nodes, we compare choices of t

m and n in figure 9.

Figure 9. Performance of ALU Gene Alignments for different parallel patterns

The striking result for this step is that MPI easily outperforms the equivalent threaded version

of this embarrassingly parallel step. In figure 9, all the peaks in the overhead correspond to

patterns with large values of t. Note that the MPI intra-node 1x24x32 pattern completes the full

624 billion alignments in 2.33 hours – 4.9 times faster than threaded implementation 24x1x32.

This 768 core MPI run has a parallel overhead of 1.43 corresponding to a speed up of 316.

The SW-G alignment performance is probably dominated by memory bandwidth issues, and

25

we are pursuing several points that could affect this though it is not at our highest priority as SW-

G is not the dominant step. We have tried to identify the reason for the comparative slowness of

threading. Using Windows monitoring tools, we found that the threaded version has about a

factor of 100 more context switches than in the one thread per process MPI version. This could

lead to a slow down of the threaded approach and correspond to Windows handing of paging of

threads with large memory footprints.

6. The Performance of MPI on Clouds

After the previous observations, we analyzed the performance implications of cloud for

parallel applications implemented using MPI. Specifically, we were trying to find the overhead

of virtualized resources, and understand how applications with different communication-to-

computation (C/C) ratios perform on cloud resources. We also evaluated different CPU core

assignment strategies for VMs, in order to understand the performance of VMs on multi-core

nodes.

Table 5. Computation and the communication complexities of the different MPI applications used.

Application Matrix multiplication Kmeans Clustering Concurrent Wave Equation

Description Implements Cannon’s

Algorithm

Assume a rectangular

process grid (figure 1-

left)

Implements Kmeans Clustering

Algorithm

A fixed number of iterations are

performed in each test

A vibrating string is

decomposed (split) into

points, and each MPI

process is responsible for

updating the amplitude of a

number of points over time.

Grain size (n) The number of points in a

matrix block handled by

each MPI process

The number of data points

handled by a single MPI process

Number of points handled

by each MPI process

Communication

Pattern

Each MPI process

communicates with its

neighbors both row wise

and column wise

All MPI processes send partial

clusters to one MPI process

(rank 0). Rank 0 distribute the

new cluster centers to all the

nodes

In each iteration, each MPI

process exchanges boundary

points with its nearest

neighbors

Computation per

MPI process
O(Ѝὲ

3
) ὕὲ ὕὲ

Communication

per MPI process
O(Ѝὲ

2
) = O(n) ὕ1 ὕ1

26

C/C
O

1

Ѝὲ
 ὕ

1

ὲ
 ὕ

1

ὲ

Message Size
Ѝὲ

2
= n Ὀ ï Where D is the number of

cluster centers.

ὈḺὲ

Each message contains a

double value

Communication

routines used

MPI_Sendrecv_replace() MPI_Reduce()

MPI_Bcast()

MPI_Sendrecv()

Commercial cloud infrastructures do not allow users to access the bare hardware nodes, in

which the VMs are deployed, a must-have requirement for our analysis. Therefore, we used a

Eucalyptus-based cloud infrastructure deployed at our university for this analysis. With this

cloud infrastructure, we have complete access to both virtual machine instances and to the

underlying bare-metal nodes, as well as the help of the administrators; as a result, we could

deploy different VM configurations, allocating different CPU cores to each VM. Therefore, we

selected the above cloud infrastructure as our main test bed.

For our evaluations, we selected three MPI applications with different communication and

computation requirements, namely, (i) the Matrix multiplication, (ii) Kmeans clustering, and (iii)

the Concurrent Wave Equation solver. Table 5 highlights the key characteristics of the programs

that we used as benchmarks.

6.1 Benchmarks and Results

The Eucalyptus (version 1.4) infrastructure we used is deployed on 16 nodes of an iDataplex

cluster, each of which has 2 Quad Core Intel Xeon processors (for a total of 8 CPU cores) and 32

GB of memory. In the bare-metal version, each node runs a Red Hat Enterprise Linux Server

release 5.2 (Tikanga) operating system. We used OpenMPI version 1.3.2 with gcc version 4.1.2.

We then created a VM image from this hardware configuration, so that we would have a similar

software environment on the VMs once they were deployed. The virtualization is based on the

Xen hypervisor (version 3.0.3). Both bare-metal and virtualized resources utilized giga-bit

27

Ethernet connections.

When VMs are deployed using Eucalyptus, it allows us to configure the number of CPU

cores assigned to each VM image. For example, with 8 core systems, the CPU core allocation

per VM can range from 8 cores to 1 core per VM, resulting in several different CPU core

assignment strategies. In an Amazon EC2 infrastructure, the standard instance type has ½ a CPU

per VM instance (Evangelinos and Hill 2008). In the current version of Eucalyptus, the minimum

number of cores that we can assign for a particular VM instance is 1; hence, we selected five

CPU core assignment strategies (including the bare-metal test) listed in Table 6.

Table 6.Different hardware/virtual machine configurations used for our performance evaluations.

Ref Description Number of CPU cores

accessible to the virtual

or bare-metal node

Amount of memory (GB)

accessible to the virtual or

bare-metal node

Number of virtual

or bare-metal

nodes deployed

BM Bare-metal node 8 32 16

1-VM-8-core 1 VM instance per

bare-metal node

8 30 (2GB is reserved for

Dom0)

16

2-VM-4- core 2 VM instances per

bare-metal node

4 15 32

4-VM-2-core 4 VM instances per

bare-metal node

2 7.5 64

8-VM-1-core 8 VM instances per

bare-metal node

1 3.75 128

We ran all the MPI tests, on all 5 hardware/VM configurations, and measured the

performance and calculated speed-ups and overheads. We calculated two types of overheads for

each application using formula (1). The total overhead induced by the virtualization and the

parallel processing is calculated using the bare-metal single process time as T(1) in the formula

(1). The parallel overhead is calculated using the single process time from a corresponding VM

as T(1) in formula (1).

 In all the MPI tests we performed, we used the following invariant to select the number of

parallel processes (MPI processes) for a given application.

Number of MPI processes = Number of CPU cores used

28

For example, for the matrix multiplication application, we used only half the number of

nodes (bare-metal or VMs) available to us, so that we had 64 MPI processes = 64 CPU cores.

(This is mainly because the matrix multiplication application expects the MPI processes to be in

a square grid, in contrast to a rectangular grid). For Kmeans clustering, we used all the nodes,

resulting in a total of 128 MPI processes utilizing all 128 CPU cores. Some of the results of our

analysis highlighting the different characteristics we observed are shown in figures 10 - 17.

Figure 10. Performance of the matrix multiplication

application – average time (in seconds) against the size

of a matrix (Number of MPI processes = 64).

Figure 11. Speed-up of the matrix multiplication

application – Speedup against the number of MPI

processes = number of CPU cores used (Fixed matrix

size = 5184x5184).

Figure 12. Performance of Kmeans clustering – average

time (in seconds) against the number of 2D data points

clustered (Number of MPI Processes = 128)

Figure 13. Speed-up of the Kmeans clustering – speedup

against the number of MPI processes = number of CPU

cores used (Number of data points = 860160)

29

Figure 14. Total overhead of the Kmeans clustering –

overhead against the 1/ grain size, grain size = number

of 2D data points per parallel task (Number of MPI

Processes = 128)

Figure 15. Parallel overhead of the Kmeans clustering –

parallel overhead against 1/grain size (Number of MPI

Processes = 128)

Figure 16. Performance of the Concurrent Wave Solver

– average time (in seconds) against the number of points

computed (Number of MPI Processes = 128)

Figure 17. Total overhead of the Concurrent Wave

Solver – overhead against 1/grain size, grain size =

number of points assigned per parallel task (Number of

MPI Processes = 128)

For the matrix multiplication, the graphs show very close performance characteristics in all

the different hardware/VM configurations. As we expected, the bare-metal has the best

performance and speedup values, compared to the VM configurations (apart from the region

close to the matrix size of 4096x4096, where the VM performed better than the bare-metal. We

have performed multiple tests at this point, and found that it is due to the cache performances of

the bare-metal node). After the bare-metal, the next best performance and speed-ups were

recorded in the case of 1-VM per bare-metal node configuration, in which the performance

difference was mainly due to the overhead induced by the virtualization. However, as we

30

increased the number of VMs per bare-metal node, the overhead increased as well. At the 81

processes, the 8-VMs per node configuration shows about a 34% decrease in speed-up compared

the bare-metal results.

In Kmeans clustering, the effect of virtualized resources is much clearer than in the case of

the matrix multiplication. All VM configurations show a lower performance compared to the

bare-metal configuration. In this application, the amount of data transferred between MPI

processes is extremely low compared to the amount of data processed by each MPI process, and

also, in relation to the amount of computations performed. Figure 14 and figure 15 show the total

overhead and the parallel overhead for Kmeans clustering under different VM configurations.

From these two calculations, we found that, for VM configurations, the overheads are extremely

large for data set sizes of less than 10 million points, for which the bare-metal overhead remains

less than 1 (<1 for all the cases). For larger data sets such as those of 40 million points, all

overheads reached less than 0.5. The slower speed-up of the VM configurations (shown in figure

13) is due to the use of a smaller data set (~800K points) to calculate the speed-ups. The

overheads are extremely large for this region of the data sizes, and hence, it resulted in lower

speed-ups for the VMs.

Concurrent wave equation splits a number of points into a set of parallel processes, and each

parallel process updates its portion of the points in some number of steps. An increase in the

number of points increases the amount of computations performed. Since we fixed the number of

steps in which the points were updated, we obtained a constant amount of communication in all

the test cases, resulting in a C/C ratio of O(1/n). In this application also, the difference in

performance between the VMs and the bare-metal version was clearer, and at the highest grain

size, the total overhead of 8-VMs per node is about 7 times higher than the overhead of the bare-

31

metal configuration. The performance differences between the different VM configurations

became smaller with the increase in grain size.

From the above experimental results, we can see that the applications with lower C/C ratios

experienced a slower performance in virtualized resources. When the amount of data transferred

between MPI processes is large, as in the case of the matrix multiplication, the application is

more susceptible to the bandwidth than the latency. From the performance results of the matrix

multiplication, we can see that the virtualization has not affected the bandwidth considerably.

However, all the other results show that the virtualization has caused considerable latencies for

parallel applications, especially with smaller data transfer requirements. The effect on latency

increases as we use more VMs in a bare-metal node.

According to the Xen para-virtualization architecture (Barham, Dragovic, et al. 2003),

domUs (VMs that run on top of a Xen para-virtualization) are not capable of performing I/O

operations by themselves. Instead, they communicate with dom0 (privileged OS) via an event

channel (interrupts) and the shared memory, and then the dom0 performs the I/O operations on

behalf of the domUs. Although the data is not copied between domUs and dom0, the dom0 needs

to schedule the I/O operations on behalf of the domUs. Figure 18(left) and figure 18 (right)

shows this behavior in the 1-VM per node and 8-VMs per node configurations that we used.

Figure 18. Communication between dom0 and domU when 1-VM per node is deployed (left). Communication

between dom0 and domUs when 8-VMs per node were deployed (right).

In all the above parallel applications we tested, the timing figures measured correspond to the

32

time for computation and communication inside the applications. Therefore, all the I/O

operations performed by the applications are network-dependent. From figure 19 (right), it is

clear that Dom0 needs to handle 8 event channels when there are 8-VM instances deployed on a

single bare-metal node. Although the 8 MPI processes run on a single bare-metal node, since

they are in different virtualized resources, each of them can only communicate via Dom0. This

explains the higher overhead in our results for 8-VMs per node configuration. The architecture

reveals another important feature as well - that is, in the case of the 1-VM per node

configuration, when multiple processes (MPI or other) that run in the same VM communicate

with each other via the network, all the communications must be scheduled by the dom0. This

results in higher latencies. We could verify this by running the above tests with LAM MPI (a

predecessor of OpenMPI, which does not have improved support for in-node communications

for multi-core nodes). Our results indicate that, with LAM MPI, the worst performance for all the

test occurred when 1-VM per node is used. For example, figure 19 shows the performance of

Kmeans clustering under bare-metal, 1-VM, and 8-VMs per node configurations. This

observation suggests that, when using VMs with multiple CPUs allocated to each of them for

parallel processing, it is better to utilize parallel runtimes, which have better support for in-node

communication.

Figure 19. LAM vs. OpenMPI (OMPI) under different VM configurations

33

Several others have also performed relevant research on the performance implications of the

virtualized resources. Youseff, Wolski, et al. (2006) presents an evaluation of the performance

impact of Xen on MPI. According to their evaluations, the Xen does not impose considerable

overheads for HPC applications. However, our results indicate that the applications that are

more sensitive to latencies (smaller messages, lower communication to computation ratios) also

experience higher overheads under virtualized resources, and this overhead increases as more

and more VMs are deployed per hardware node. From their evaluations, it is not clear how many

VMs they deployed on the hardware nodes, or how many MPI processes were used in each VM.

According to our results, these factors cause significant changes in possible results. Running 1-

VM per hardware node produces a VM instance with a similar number of CPU cores, such as in

a bare-metal node. However, our results indicate that, even in this approach, if the parallel

processes inside the node communicate via the network, the virtualization may produce higher

overheads under the current VM architectures.

Evangelinos and Hill (2008) discuss the details of their analysis of the performance of HPC

benchmarks on EC2 cloud infrastructure. One of the key observations noted in their paper is that

both the OpenMPI and the MPICH2-nemsis show extremely large latencies, while the LAM

MPI, the GridMPI, and the MPICH2-scok show smaller smoother latencies. This observation is

similar to what we observed with the LAM-MPI in our tests, and the same explanation holds

valid for their observation as well.

Walker (2008) presents benchmark results of the performance of HPC applications using

“high CPU extra large” instances provided by EC2, and on a similar set of local hardware nodes.

The local nodes are connected using infiniband switches; whereas Amazon EC2 network

technology is unknown. The results indicate about a 40%-1000% performance degradation on

34

the EC2 resources, compared to the local cluster. Since the differences in operating systems and

the compiler versions between the VMs and bare-metal nodes may cause variations in results, for

our analysis, we used a cloud infrastructure over which we have complete control. In addition,

we used similar software environments in both the VMs and the bare-metal nodes. In our results,

we noticed that applications that are more susceptible to latencies experience higher performance

degradation (around 40%) under virtualized resources. Bandwidth does not seem to be a

consideration in private cloud infrastructures.

Gavrilvska, Kumar et al. (2007) discuss several improvements over the current virtualization

architectures to support HPC applications such as HPC hypervisors and self-virtualized I/O

devices. We notice the importance of such improvements and research. In our experimental

results, we used hardware nodes with 8 cores, and we deployed and tested up to 8VMs per node

in these systems. Our results show that the virtualization overhead increases with the number of

VMs deployed on a hardware node. These characteristics will have a larger impact on systems

having more CPU cores per node. A node with 32 cores running 32 VM instances may produce

very large overheads under the current VM architectures.

7. Conclusions and Future Work

We have described several different studies of clouds and cloud technologies on both real

applications and standard benchmark. These address different aspects of parallel computing

using either traditional (MPI) or the new cloud inspired approaches. We find that cloud

technologies work well for most pleasingly-parallel problems (“Map-only and “Map-reduce”

classes of applications). In addition, their support for handling large data sets, the concept of

moving computation to data, and the better quality of services provided such as fault tolerance

and monitoring, all serve to simplify the implementation details of such problems. Applications

35

with complex communication patterns observe higher overheads when implemented using cloud

technologies, and even with large data sets, these overheads limit the usage of cloud technologies

for such applications. Enhanced MapReduce runtimes such as CGL-MapReduce allows iterative

style applications to utilize the MapReduce programming model, while incurring minimal

overheads, as compared to the other runtimes such as Hadoop and Dryad.

 Handling large data sets using cloud technologies on cloud resources is an area that needs

more research. Most cloud technologies support the concept of moving computation to data

where the parallel tasks access data stored in local disks. Currently, it is not clear to us how this

approach would work well with the VM instances that are leased only for the duration of use. A

possible approach is to stage the original data in high performance parallel file systems or

Amazon S3 type storage services, and then move data to the VMs each time they are leased to

perform computations.

 MPI applications that are sensitive to latencies experience moderate-to-higher overheads

when performed on cloud resources, and these overheads increase as the number of VMs per

bare-hardware node increases. For example, in Kmeans clustering, 1-VM per node shows a

minimum of an 8% total overhead, while 8-VMs per node shows at least a 22% overhead. In the

case of the Concurrent Wave Equation Solver, both these overheads are around 50%. Therefore,

we expect the CPU core assignment strategies, such as ½ of a core per VM, to produce very high

overheads for applications that are sensitive to latencies. Applications that are not susceptible to

latencies, such as applications that perform large data transfers and/or higher

Communication/Computation ratios, show minimal total overheads in both bare-metal and VM

configurations. Therefore, we expect that the applications developed using cloud technologies

will work fine with cloud resources, because the milliseconds-to-seconds latencies that they

36

already have under the MapReduce model will not be affected by the additional overheads

introduced by the virtualization. This is also an area we are currently investigating. We are also

building applications (biological DNA sequencing) whose end-to-end implementation from data

processing to filtering (data-mining), involves an integration of MapReduce and MPI (Fox, Bae

et al. 2008).

Acknowledgements

We would like to thank Joe Rinkovsky and Jenett Tillotson from IU UITS for their dedicated

support in setting up a private cloud infrastructure and helping us with various configurations

associated with our evaluations. We would also want to thank ARTS team at Microsoft Research

for their support on hardware and software infrastructures. We are grateful for Mina Rho and

Haixu Tang from IU School of Informatics and Computing for their help in understanding Alu

sequence clustering and providing human and chimpanzee gene sequence data.

References

Amazon.com, Inc. 2009. Simple Storage Service (S3). http://aws.amazon.com/s3.

ASF. 2009. Apache Hadoop Core. http://hadoop.apache.org/core.

ASF. 2009. Apache Hadoop Pig. http://hadoop.apache.org/pig/.

Barham, P., B. Dragovic, et al. 2003. Xen and the art of virtualization. Proceedings of the nineteenth

ACM symposium on Operating systems principles. Bolton Landing, NY, USA.

Batzer M.A., and P.L. Deininger, 2002, ALU repeats and human genomic diversity. Nat. Rev. Genet. 3

(5): 370-379.

Condor Team. 2009. Condor DAGMan, http://www.cs.wisc.edu/condor/dagman/.

Dean, J. and S. Ghemawat. 2008. MapReduce: simplified data processing on large clusters. Commun.

ACM 51(1): 107-113.

Dongarra, J., C. A. Geist, et al. 1993. Integrated PVM Framework Supports Heterogeneous Network

Computing. Computers in Physics: 166-175.

37

Ekanayake, J., S. Pallickara, et al. (2008). MapReduce for Data Intensive Scientific Analyses. eScience,

2008. IEEE Fourth International Conference on eScience '08

ElasticHosts Ltd. 2009. Cloud Hosting. http://www.elastichosts.com/.

Ericsson 2009. Erlang programming language. http://www.erlang.org/.

Evangelinos, C. and C. Hill. 2008. Cloud Computing for parallel Scientific HPC Applications: Feasibility

of Running Coupled Atmosphere-Ocean Climate Models on Amazon's EC2, The

First Workshop on Cloud Computing and its Applications (CCAô08). Chicago, IL.

Forum, MPI. n.d.. MPI (Message Passing Interface). http://www.mcs.anl.gov/research/projects/mpi/.

Foster, I. 2001. The anatomy of the grid: enabling scalable virtual organizations. International Journal of

Supercomputer Applications 15: 2001.

Fox, G. C., Hey, A. and Otto, S., Matrix Algorithms on the Hypercube I: Matrix Multiplication, Parallel

Computing, 4, 17 (1987)

Fox, G., S. Bae, et al. 2008. Parallel Data Mining from Multicore to Cloudy Grids. Proc. of International

Advanced Research Workshop on High Performance Computing and Grids, HPC2008, Cetraro, Italy.

Gabriel, E., G.E. Fagg, et al. 2004. Open MPI: Goals, concept, and design of a next generation MPI

implementation. In Proc of, 11th European PVM/MPI Usersô Group Meeting, Budapest, Hungary.

Gavrilovska, A., S. Kumar, et al. 2007. Abstract High-Performance Hypervisor Architectures:

Virtualization in HPC Systems. Proc. of HPCVirt 2007, Portugal, Mar 2007.

Ghemawat, S., H. Gobioff, et al. 2003. The Google file system. SIGOPS Oper. Syst. Rev. 37(5): 29-43.

Gotoh, O. 1982. An improved algorithm for matching biological sequences. Journal of Molecular

Biology 162:705-708

Gu, Y. and R. L. Grossman. 2009. Sector and Sphere: the design and implementation of a high-

performance data cloud. Philos Transact A Math Phys Eng Sci 367(1897): 2429-45.

Huang, X. and A. Madan. 1999. CAP3: A DNA sequence assembly program. Genome Res 9(9): 868-77.

Hull, D., K. Wolstencroft, et al. 2006. Taverna: a tool for building and running workflows of services.

Nucleic Acids Res 34(Web Server issue): W729-32.

Isard, M., M. Budiu, et al. 2007. Dryad: distributed data-parallel programs from sequential building

blocks. SIGOPS Oper. Syst. Rev. 41(3): 59-72.

Vermorel, J. 2005. NAligner (Smith Waterman software with Gotoh enhancement).

http://jaligner.sourceforge.net/naligner/.

Johnsson, S. L., T. Harris, et al. 1989. Matrix multiplication on the connection machine. Proc of the 1989

ACM/IEEE conference on Supercomputing. Reno, Nevada, United States, ACM.

http://jaligner.sourceforge.net/naligner/

38

Jurka, J. 2000. Repbase Update: a database and an electronic journal of repetitive elements. Trends Genet.

9:418-420 (2000).

Keahey, K., I. Foster, et al. 2005. Virtual workspaces: Achieving quality of service and quality of life in

the Grid. Sci. Program. 13(4): 265-275.

Ludscher, B., I. Altintas, et al. 2006. Scientific workflow management and the Kepler system: Research

Articles. Concurr. Comput. : Pract. Exper. 18(10): 1039-1065.

Macqueen, J. (1967). Some methods for classification and analysis of multivariate observations. Proc. of

Fifth Berkeley Symp. on Math. Statist. and Prob.

Moretti, C., H. Bui, et al. 2009. All-Pairs: An Abstraction for Data Intensive Computing on Campus

Grids. IEEE Transactions on Parallel and Distributed Systems. 99(1)

Nokia. 2009. Disco project. http://discoproject.org/.

Nurmi, D., R. Wolski, et al. 2009. The Eucalyptus Open-Source Cloud-Computing System. Proc. of 9th

IEEE/ACM International Symposium on Cluster Computing and the Grid, 2009.

Pallickara, S. and G. Fox. 2003. NaradaBrokering: a distributed middleware framework and architecture

for enabling durable peer-to-peer grids. Proc of the ACM/IFIP/USENIX 2003 International Conference on

Middleware. Rio de Janeiro, Brazil, Springer-Verlag New York, Inc.

Pallickara, S. L. and M. Pierce. 2008. SWARM: Scheduling Large-Scale Jobs over the Loosely-Coupled

HPC Clusters. Proc of IEEE Fourth International Conference on eScience '08(eScience,

2008).Indianapolis, USA

Pike, R., S. Dorward, et al. 2005. Interpreting the data: Parallel analysis with Sawzall. Sci. Program.

13(4): 277-298.

Raicu, I., Y. Zhao, et al. 2007. Falkon: a Fast and Light-weight tasK executiON framework. Proceedings

of the 2007 ACM/IEEE conference on Supercomputing. Reno, Nevada, ACM.

ServePath. 2009. GoGrid Cloud Hosting. http://www.gogrid.com/.

Smit, A. F. A., R. Hubley, and P. Green. 2004. Repeatmasker. http://www.repeatmasker.org)

Smith, T.F. and Waterman, M.S. 1981. Identification of common molecular subsequences. Journal of

Molecular Biology 147:195-197

Smith Waterman Software. http://jaligner.sourceforge.net/naligner/.

Walker, E. 2008. Benchmarking Amazon EC2 for high-performance scientific computing.

http://www.usenix.org/publications/login/2008-10/openpdfs/walker.pdf.

Y.Yu, M. Isard, et al. 2008. DryadLINQ: A System for General-Purpose Distributed Data-Parallel

Computing Using a High-Level Language. Proc of Symposium on Operating System Design and

Implementation (OSDI). San Diego, CA.

http://www.repeatmasker.org/

39

Youseff, L., R. Wolski, et al. 2006. Evaluating the Performance Impact of Xen on MPI and Process

Execution For HPC Systems. Proc of First International Workshop on Virtualization Technology in

Distributed Computing, 2006.

