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Abstract   

We present our experiences in applying, developing, and evaluating cloud and cloud 

technologies. First, we present our experience in applying Hadoop and DryadLINQ to a series of 

data/compute intensive applications and then compare them with a novel MapReduce runtime 

developed by us, named CGL-MapReduce, and MPI. Preliminary applications are developed for 

particle physics, bioinformatics, clustering, and matrix multiplication. We identify the basic 

execution units of the MapReduce programming model and categorize the runtimes according to 

their characteristics. MPI versions of the applications are used where the contrast in performance 

needs to be highlighted. We discuss the application structure and their mapping to parallel 

architectures of different types, and look at the performance of these applications. Next, we 

present a performance analysis of MPI parallel applications on virtualized resources. 

1. Introduction 

Cloud and cloud technologies are two broad categories of technologies related to the general 

notion of Cloud Computing. By “Cloud,” we refer to a collection of infrastructure services such 

as Infrastructure-as-a-service (IaaS), Platform-as-a-Service (PaaS), etc., provided by various 

organizations where virtualization plays a key role. By “Cloud Technologies,” we refer to 
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various cloud runtimes such as Hadoop(ASF, core, 2009), Dryad (Isard, Budiu et al. 2007), and 

other MapReduce(Dean and Ghemawat 2008) frameworks, and also the storage and 

communication frameworks such as Hadoop Distributed File System (HDFS), Amazon 

S3(Amazon 2009), etc.   

The introduction of commercial cloud infrastructure services such as Amazon EC2, 

GoGrid(ServePath 2009), and ElasticHosts(ElasticHosts 2009) has allowed users to provision 

compute clusters fairly easily and quickly, by paying a monetary value for the duration of their 

usages of the resources. The provisioning of resources happens in minutes, as opposed to the 

hours and days required in the case of traditional queue-based job scheduling systems. In 

addition, the use of such virtualized resources allows the user to completely customize the 

Virtual Machine (VM) images and use them with root/administrative privileges, another feature 

that is hard to achieve with traditional infrastructures. The availability of open source cloud 

infrastructure software such as Nimbus(Keahey, Foster et al. 2005) and Eucalyptus(Nurmi, 

Wolski et al. 2009), and the open source virtualization software stacks such as Xen 

Hypervisor(Barham, Dragovic et al. 2003), allows organizations to build private clouds to 

improve the resource utilization of the available computation facilities. The possibility of 

dynamically provisioning additional resources by leasing from commercial cloud infrastructures 

makes the use of private clouds more promising. 

Among the many applications which benefit from cloud and cloud technologies, the 

data/compute intensive applications are the most important. The deluge of data and the highly 

compute intensive applications found in many domains such as particle physics, biology,  

chemistry, finance, and information retrieval, mandate the use of large computing infrastructures 

and parallel processing to achieve considerable performance gains in analyzing data. The 
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addition of cloud technologies creates new trends in performing parallel computing. An 

employee in a publishing company who needs to convert a document collection, terabytes in 

size, to a different format can do so by implementing a MapReduce computation using Hadoop, 

and running it on leased resources from Amazon EC2 in just few hours. A scientist who needs to 

process a collection of gene sequences using CAP3(Huang and Madan 1999) software can use 

virtualized resources leased from the university’s private cloud infrastructure and Hadoop. In 

these use cases, the amount of coding that the publishing agent and the scientist need to perform 

is minimal (as each user simply needs to implement a map function), and the MapReduce 

infrastructure handles many aspects of the parallelism. 

Although the above examples are successful use cases for applying cloud and cloud 

technologies for parallel applications, through our research, we have found that there are 

limitations in using current cloud technologies for parallel applications that require complex 

communication patterns or require faster communication mechanisms. For example, Hadoop and 

Dryad implementations of Kmeans clustering applications which perform an iteratively refining 

clustering operation, show higher overheads compared to implementations of MPI or CGL-

MapReduce (Ekanayake, Pallickara et al. 2008) – a streaming-based MapReduce runtime 

developed by us. These observations raise questions: What applications are best handled by 

cloud technologies? What overheads do they introduce? Are there any alternative approaches? 

Can we use traditional parallel runtimes such as MPI in cloud?  If so, what overheads does it 

have? These are some of the questions we try to answer through our research.  

In section 1, we give a brief introduction of the cloud technologies, and in section 2, we 

discuss with examples the basic functionality supported by these cloud runtimes. Section 3 

discusses how these technologies map into programming models. We describe the applications 
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used to evaluate and test technologies in section 4. The performance results are in section 5. In 

section 6, we present details of an analysis we have performed to understand the performance 

implications of virtualized resources for parallel MPI applications. Note that we use MPI running 

on non virtual machines in section 5 for comparison with cloud technologies. We present our 

conclusions in section 7. 

2. Cloud Technologies 

The cloud technologies such as MapReduce and Dryad have created new trends in parallel 

programming. The support for handling large data sets, the concept of moving computation to 

data, and the better quality of services provided by the cloud technologies make them favorable 

choice of technologies to solve large scale data/compute intensive problems. 

 The granularity of the parallel tasks in these programming models lies in between the fine 

grained parallel tasks that are used in message passing infrastructures such as PVM(Dongarra, 

Geist et al. 1993) and MPI(Forum n.d.) ; and the coarse grained jobs in workflow frameworks 

such as Kepler(Ludscher, Altintas et al. 2006) and Taverna(Hull, Wolstencroft et al. 2006), in 

which the individual tasks could themselves be parallel applications written in MPI. Unlike the 

various communication constructs available in MPI which can be used to create a wide variety of 

communication topologies for parallel programs, in MapReduce, the “map->reduce” is the only 

communication construct available. However, our experience shows that most composable 

applications can easily be implemented using the MapReduce programming model. Dryad 

supports parallel applications that resemble Directed Acyclic Graphs (DAGs) in which the 

vertices represent computation units, and the edges represent communication channels between 

different computation units.  

In traditional approaches, once parallel applications are developed, they are executed on 
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compute clusters, super computers, or Grid infrastructures (Foster 2001), where the focus on 

allocating resources is heavily biased by the availability of computational power. The application 

and the data both need to be moved to the available computational resource in order for them to 

be executed. These infrastructures are highly efficient in performing compute intensive parallel 

applications.  However, when the volumes of data accessed by an application increases, the 

overall efficiency decreases due to the inevitable data movement.  Cloud technologies such as 

Google MapReduce, Google File System (GFS) (Ghemawat, Gobioff et al. 2003), Hadoop and 

Hadoop Distributed File System (HDFS), Microsoft Dryad, and CGL-MapReduce adopt a more 

data-centered approach to parallel runtimes. In these frameworks, the data is staged in 

data/compute nodes of clusters or large-scale data centers, such as in the case of Google. The 

computations move to the data in order to perform the data processing.  Distributed file systems 

such as GFS and HDFS allow Google MapReduce and Hadoop to access data via distributed 

storage systems built on heterogeneous compute nodes, while Dryad and CGL-MapReduce 

support reading data from local disks.  The simplicity in the programming model enables better 

support for quality of services such as fault tolerance and monitoring. 

2.1 Hadoop 

Apache Hadoop has a similar architecture to Google’s MapReduce runtime, where it 

accesses data via HDFS, which maps all the local disks of the compute nodes to a single file 

system hierarchy, allowing the data to be dispersed across all the data/computing nodes. HDFS 

also replicates the data on multiple nodes so that failures of any nodes containing a portion of the 

data will not affect the computations which use that data. Hadoop schedules the MapReduce 

computation tasks depending on the data locality, improving the overall I/O bandwidth. The 

outputs of the map tasks are first stored in local disks until later, when the reduce tasks access 
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them (pull) via HTTP connections. Although this approach simplifies the fault handling 

mechanism in Hadoop, it adds a significant communication overhead to the intermediate data 

transfers, especially for applications that produce small intermediate results frequently. 

2.2 Dryad and DryadLINQ 

Dryad is a distributed execution engine for coarse grain data parallel applications. It 

combines the MapReduce programming style with dataflow graphs to solve the computation 

tasks. Dryad considers computation tasks as directed acyclic graph (DAG)s where the vertices 

represent computation tasks and with the edges acting as communication channels over which 

the data flow from one vertex to another.  The data is stored in (or partitioned to) local disks via 

the Windows shared directories and meta-data files and Dryad schedules the execution of 

vertices depending on the data locality.  (Note: The academic release of Dryad only exposes the 

DryadLINQ (Y.Yu, Isard et al. 2008) API for programmers. Therefore, all our implementations 

are written using DryadLINQ although it uses Dryad as the underlying runtime).  Dryad also 

stores the output of vertices in local disks, and the other vertices which depend on these results, 

access them via the shared directories. This enables Dryad to re-execute failed vertices, a step 

which improves the fault tolerance in the programming model. 

2.3 CGL-MapReduce 

CGL-MapReduce is a light-weight MapReduce runtime that incorporates several 

improvements to the MapReduce programming model such as (i) faster intermediate data 

transfer via a pub/sub broker network; (ii) support for long running map/reduce tasks; and (iii) 

efficient support for iterative MapReduce computations. The architecture of CGL-MapReduce is 

shown in figure 1 (Left).  
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Figure 1. (Left) Components of the CGL-MapReduce.  (Right) Different synchronization and intercommunication 

mechanisms used by the parallel runtimes. 

 

The use of streaming enables CGL-MapReduce to send the intermediate results directly from 

its producers to its consumers, and eliminates the overhead of the file based communication 

mechanisms adopted by both Hadoop and Dryad. The support for long running map/reduce tasks 

enables configuring and re-using of map/reduce tasks in the case of iterative MapReduce 

computations, and eliminates the need for the re-configuring or the re-loading of static data in 

each iteration. This feature comes with the distinction of “static data” and the “dynamic data” 

that we support in CGL-MapReduce. We refer to any data set which is static throughout the 

computation as “static data,” and the data that is changing over the computation as “dynamic 

data.” Although this distinction is irrelevant to the MapReduce computations that have only one 

map phase followed by a reduce phase, it is extremely important for iterative MapReduce 

computations, in which the map tasks need to access a static (fixed) data again and again. Figure 

1 (Right) highlights the synchronization and communication characteristics of Hadoop, Dryad, 

CGL-MapReduce, and MPI. 

Additionally, CGL-MapReduce supports the distribution of smaller variable data sets to all 

the map tasks directly, a functionality similar to MPI_Bcast() that is often found to be useful in 
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many data analysis applications. Hadoop provides a similar feature via its distributed cache, in 

which a file or data is copied to all the compute nodes. Dryad provides a similar feature by 

allowing applications to add resources (files) which will be accessible to all the vertices. With 

the above features in place, CGL-MapReduce can be used to implement iterative MapReduce 

computations efficiently. In CGL-MapReduce, the data partitioning and distribution is left to the 

users to handle, and it reads data from shared file systems or local disks. Although the use of 

streaming makes CGL-MapReduce highly efficient, implementing fault tolerance with this 

approach is not as straightforward as it is in Hadoop or Dryad. We plan to implement fault 

tolerance in CGL-MapReduce by re-executing failed map tasks and redundant execution of 

reduce tasks.  

2.4 MPI 

MPI, the de-facto standard for parallel programming, is a language-independent 

communications protocol that uses a message-passing paradigm to share the data and state 

among a set of cooperative processes running on a distributed memory system. MPI specification 

(Forum, MPI) defines a set of routines to support various parallel programming models such as 

point-to-point communication, collective communication, derived data types, and parallel I/O 

operations.   

Most MPI runtimes are deployed in computation clusters where a set of compute nodes are 

connected via a high-speed network connection yielding very low communication latencies 

(typically in microseconds). MPI processes typically have a direct mapping to the available 

processors in a compute cluster or to the processor cores in the case of multi-core systems.. We 

use MPI as the baseline performance measure for the various algorithms that are used to evaluate 

the different parallel programming runtimes.  Table 1 summarizes the different characteristics of 
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Hadoop, Dryad, CGL-MapReduce, and MPI. 

Table 1. Comparison of features supported by different parallel programming runtimes. 

Feature Hadoop Dryad CGL-MapReduce MPI 

Programming 

Model 

MapReduce DAG based execution 

flows 

MapReduce with a 

Combine phase 

Variety of 

topologies 

constructed using 

the rich set of 

parallel 

constructs 

Data Handling HDFS  Shared directories/ 

Local disks 

Shared file system / 

Local disks 

Shared file 

systems 

Intermediate 

Data 

Communication 

HDFS/ 

Point-to-point via 

HTTP 

Files/TCP pipes/ 

Shared memory FIFO 

Content Distribution 

Network 

(NaradaBrokering 

(Pallickara and Fox 

2003) ) 

Low latency 

communication 

channels  

Scheduling Data locality/ 

Rack aware  

Data locality/ Network 

topology based run 

time graph 

optimizations 

Data locality Available 

processing 

capabilities 

Failure 

Handling 

Persistence via HDFS 

Re-execution of map 

and reduce tasks 

Re-execution of 

vertices 

Currently not 

implemented 

(Re-executing map tasks, 

redundant reduce tasks) 

Program level 

Check pointing 

OpenMPI 

(Gabriel, E., 
G.E. Fagg, et 

al. 2004), FT 

MPI 

Monitoring Monitoring support of 

HDFS, Monitoring 

MapReduce 

computations 

Monitoring support for 

execution graphs 

Programming interface 

to monitor the progress 

of jobs 

Minimal support 

for task level 

monitoring 

Language 

Support 

Implemented using 

Java. Other languages 

are supported via 

Hadoop Streaming 

Programmable via C#  

DryadLINQ provides 

LINQ programming 

API for Dryad 

Implemented using Java 

Other languages are 

supported via Java 

wrappers 

C, C++, Fortran, 

Java, C# 

3. Programming models 

When analyzing applications written in the MapReduce programming model, we can identify 

three basic execution units wiz: (i) map-only; (ii) map-reduce; and (iii) iterative-map-reduce.  

Complex applications can be built by combining these three basic execution units under the 

MapReduce programming model. Table 2 shows the data/computation flow of these three basic 

execution units, along with examples.  
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Table 2.  Three basic execution units under the MapReduce programming model. 

Map-only Map-reduce Iterative map-reduce 

 

  
Cap3 Analysis (we will discuss more 

about this later) 

Converting a collection of documents to 

different formats, processing a collection 

of medical images, and brute force 

searches in cryptography 

Parametric sweeps 

HEP data analysis (we will 

discuss more about this later) 

Histogramming operations, 

distributed search, and 

distributed sorting 

Information retrieval 

Expectation maximization 

algorithms 

Kmeans clustering 

Matrix multiplication 

 

In the MapReduce programming model, the tasks that are being executed at a given phase 

have similar executables and similar input and output operations. With zero reduce tasks, the 

MapReduce model reduces to a map-only model which can be applied to many “embarrassingly 

parallel” applications. Software systems such as batch queues, Condor(Condor 2009), Falkon 

(Raicu, Zhao et al. 2007) and SWARM (Pallickara and Pierce 2008) all provide similar 

functionality by scheduling large numbers of individual maps/jobs. Applications which can 

utilize a “reduction” or an “aggregation” operation can use both phases of the MapReduce model 

and, depending on the “associativity” and “transitivity” nature of the reduction operation, 

multiple reduction phases can be applied to enhance the parallelism. For example, in a 

histogramming operation, the partial histograms can be combined in any order and in any 

number of steps to produce a final histogram.  

The “side effect free”-nature of the MapReduce programming model does not promote 

iterative MapReduce computations. Each map and reduce tasks are considered as atomic 

execution units with no state shared in between executions. In parallel runtimes such as those of 

the MPI, the parallel execution units live throughout the entire life of the program; hence, the 
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state of a parallel execution unit can be shared across invocations. We propose an intermediate 

approach to develop MapReduce computations. In our approach, the map/reduce tasks are still 

considered side effect-free, but the runtime allows configuring and re-usage of the map/reduce 

tasks. Once configured, the runtime caches the map/reduce tasks. This way, both map and reduce 

tasks can keep the static data in memory, and can be called iteratively without loading the static 

data repeatedly. 

Hadoop supports configuring the number of reduce tasks, which enables the user to create 

“map-only” applications by using zero reduce tasks. Hadoop can be used to implement iterative 

MapReduce computations, but the framework does not provide additional support to implement 

them efficiently. The CGL-MapReduce supports all the above three execution units, and the user 

can develop applications with multiple stages of MapReduce by combining them in any order. 

Dryad execution graphs resembling the above three basic units can be generated using 

DryadLINQ operations. DryadLINQ adds the LINQ programming features to Dryad where the 

user can implement various data analysis applications using LINQ queries, which will be 

translated to Dryad execution graphs by the compiler. However, unlike in the MapReduce model, 

Dryad allows the concurrent vertices to have different behaviors and different input/output 

characteristics, thus enabling a more workflow style programming model. Dryad also allows 

multiple communication channels in between different vertices of the data flow graph. 

Programming languages such as Swazall (Pike, Dorward et al. 2005), introduced by Google for 

its MapReduce runtime enables high level language support for expressing MapReduce 

computations, and the Pig (ASF, pig, 2009) available as a sub project of Hadoop, allows query 

operations on large data sets.  

Apart from these programming models, there are other software frameworks that one can use 
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to perform data/compute intensive analyses.  Disco (Nokia 2009) is an open source MapReduce 

runtime developed using a functional programming language named Erlang (Ericsson 2009). 

Disco architecture shares clear similarities with both the Google and the Hadoop MapReduce 

architectures. Sphere (Gu and Grossman 2009) is a framework which can be used to execute 

user-defined functions in parallel on data stored in a storage framework named Sector. Sphere 

can also perform MapReduce style programs, and the authors compare the performance with 

Hadoop for tera-sort application. All-Pairs (Moretti, Bui et al. 2009) is an abstraction that can be 

used to solve the common problem of comparing all the elements in a data set with all the 

elements in another data set by applying a given function. This problem can be implemented 

using Hadoop and Dryad as well, and we discuss a similar problem in section 4.4. We can also 

develop an efficient iterative MapReduce implementation using CGL-MapReduce to solve this 

problem. The algorithm is similar to the matrix multiplication algorithm that we will explain in 

section 4.3. 

MPI and threads are two other programming models that can be used to implement parallel 

applications. MPI can be used to develop parallel applications in distributed memory 

architectures whereas threads can be used in shared memory architectures, especially in multi-

core nodes. The low level communication constructs available in MPI allows users to develop 

parallel applications with various communication topologies involving fine grained parallel 

tasks. The use of low latency network connections between nodes enables applications to 

perform large number of inter-task communications.  In contrast, the next generation parallel 

runtimes such as MapReduce and Dryad provide small number of parallel constructs such as 

“map-only”, “map-reduce”, “Select”, “Apply”, “Join” etc.., and does not require high speed 

communication channels. These constraints require adopting parallel algorithms which perform 
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coarse grained parallel tasks and less communication.  The use of threads is a natural approach in 

shared memory architectures, where communication between parallel tasks reduces to the simple 

sharing of pointers via the shared memory. However, the operating system’s support for user 

level threads plays a major role in achieving better performances using multi-threaded 

applications. We will discuss the issues in using threads and MPI in more detail in section 5.4.2. 

4. Data Analyses Applications 

4.1 CAP3 – Sequence Assembly Program 

CAP3 is a DNA sequence assembly program developed by Huang and Madan (1999) that 

performs several major assembly steps: these steps include computation of overlaps, construction 

of contigs, construction of multiple sequence alignments, and generation of consensus sequences 

to a given set of gene sequences. The program reads a collection of gene sequences from an input 

file (FASTA file format) and writes its output to several output files, as well as the standard 

output (as shown below). 

Input.fsa -> CAP3 -> Stdout + Other output files 

The program structure of this application fits directly with the “Map-only” basic execution 

unit, as shown in Table 2. We implemented a parallel version of CAP3 using Hadoop, CGL-

MapReduce, and DryadLINQ. Each map task in Hadoop and in CGL-MapReduce calls the 

CAP3 executable as a separate process for a given input data file (the input “Value” for the map 

task), whereas in DryadLINQ, a “homomorphic Apply” operation calls the CAP3 executable on 

each data file in its data partition as a separate process. All the implementations move the output 

files to a predefined shared directory. This application resembles a common parallelization 

requirement, where an executable script, or a function in a special framework such as Matlab or 
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R, needs to be executed on each input data item. The above approach can be used to implement 

all these types of applications using any of the above three runtimes. 

4.2 High Energy Physics 

Next, we applied the MapReduce technique to parallelize a High Energy Physics (HEP) data 

analysis application, and implemented it using Hadoop, CGL-MapReduce, and Dryad. The HEP 

data analysis application processes large volumes of data, and performs a histogramming 

operation on a collection of event files produced by HEP experiments. The details regarding the 

two MapReduce implementations and the challenges we faced in implementing them can be 

found in (Ekanayake, Pallickara et al. 2008). In the DryadLINQ implementation, the input data 

files are first distributed among the nodes of the cluster manually. We developed a tool to 

perform the manual partitioning and distribution of the data.  The names of the data files 

available in a given node were used as the data to the DryadLINQ program. Using a 

homomorphic “Apply” operation, we executed a ROOT interpreted script on groups of input 

files in all the nodes. The output histograms of this operation were written to a pre-defined 

shared directory. Next, we used another “Apply” phase to combine these partial histograms into 

a single histogram using DryadLINQ. 

4.3 Iterative MapReduce – Kmeans Clustering and Matrix Multiplication 

Parallel applications that are implemented using message passing runtimes can utilize various 

communication constructs to build diverse communication topologies. For example, a matrix 

multiplication application that implements Fox's Algorithm (Fox and Hey, 1987) and Cannon’s 

Algorithm (Johnsson, Harris et al. 1989) assumes parallel processes to be in a rectangular grid. 

Each parallel process in the grid communicates with its left and top neighbors as shown in figure 

2 (left). The current cloud runtimes, which are based on data flow models such as MapReduce 
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and Dryad, do not support this behavior, in which the peer nodes communicate with each other. 

Therefore, implementing the above type of parallel applications using MapReduce or 

DryadLINQ requires adopting different algorithms.  

Figure 2. (Left) The communication topology of Cannon’s Algorithm implemented using MPI, (middle) 

Communication topology of matrix multiplication application based on MapReduce, and (right) Communication 

topology of Kmeans Clustering implemented as a MapReduce application. 

 

We have implemented matrix multiplication applications using Hadoop and CGL-

MapReduce by adopting a row/column decomposition approach to split the matrices. To clarify 

our algorithm, let’s consider an example where two input matrices, A and B, produce matrix C, 

as the result of the multiplication process. We split the matrix B into a set of column blocks and 

the matrix A into a set of row blocks. In each iteration, all the map tasks process two inputs: (i) a 

column block of matrix B, and (ii) a row block of matrix A; collectively, they produce a row 

block of the resultant matrix C. The column block associated with a particular map task is fixed 

throughout the computation, while the row blocks are changed in each iteration. However, in 

Hadoop’s programming model (a typical MapReduce model), there is no way to specify this 

behavior.  Hence, it loads both the column block and the row block in each iteration of the 

computation. CGL-MapReduce supports the notion of long running map/reduce tasks where 

these tasks are allowed to retain static data in the memory across invocations, yielding better 

performance for “Iterative MapReduce” computations. The communication pattern of this 
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application is shown in figure 2 (middle).  

Kmeans clustering (Macqueen 1967) is another application that performs iteratively refining 

computation. We also implemented Kmeans clustering applications using Hadoop, CGL-

MapReduce, and DryadLINQ. In the two MapReduce implementations, each map task calculates 

the distances between all the data elements in its data partition, to all the cluster centers produced 

during the previous run.  It then assigns data points to these cluster centers, based on their 

Euclidian distances. The communication topology of this algorithm is shown in figure 2 (right). 

Each map task produces partial cluster centers as the output; these are then combined at a reduce 

task to produce the current cluster centers. These current cluster centers are used in the next 

iteration, to find the next set of cluster centers. This process continues until the overall distance 

between the current cluster centers and the previous cluster centers, reduces below a predefined 

threshold.  The Hadoop implementation uses a new MapReduce computation for each iteration 

of the program, while CGL-MapReduce’s long running map/reduce tasks allows it to re-use 

map/reduce tasks. The DryadLINQ implementation uses various DryadLINQ operations such as 

“Apply”, “GroupBy”, “Sum”, “Max”, and “Join” to perform the computation, and also, it utilizes 

DryadLINQ’s “loop unrolling” support to perform multiple iterations as a single large query. 

4.4 ALU Sequencing Studies 

4.4.1 ALU Clustering 

The ALU clustering problem (Batzer and Deininger 2002) is one of the most challenging 

problems for sequence clustering because ALUs represent the largest repeat families in human 

genome. There are about 1 million copies of ALU sequences in human genome, in which most 

insertions can be found in other primates and only a small fraction (~ 7000) are human-specific. 

This indicates that the classification of ALU repeats can be deduced solely from the 1 million 
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human ALU elements. Notable, ALU clustering can be viewed as a classical case study for the 

capacity of computational infrastructures because it is not only of great intrinsic biological 

interests, but also a problem of a scale that will remain as the upper limit of many other 

clustering problem in bioinformatics for the next few years, e.g. the automated protein family 

classification for a few millions of proteins predicted from large metagenomics projects.  

4.4.2 Smith Waterman Dissimilarities 

We identified samples of the human and Chimpanzee ALU gene sequences using 

Repeatmasker (Smith and Hubley 2004) with Repbase Update (Jurka 2000). We have been 

gradually increasing the size of our projects with the current largest samples having 35339 and 

50000 sequences and these require a modest cluster such as Tempest (768 cores) for processing 

in a reasonable time (a few hours as shown in section 5). Note from the discussion in section 

4.4.1, we are aiming at supporting problems with a million sequences  -- quite practical today on 

TeraGrid and equivalent facilities given basic analysis steps scale like O(N
2
). 

We used open source version NAligner (Smith Waterman Software) of the Smith Waterman 

– Gotoh algorithm SW-G (Smith, Waterman et al 1981;  Gotoh, 1982) modified to ensure low 

start up effects by each thread/processing large numbers (above a few hundred) at a time. 

Memory bandwidth needed was reduced by storing data items in as few bytes as possible. 

4.4.3 The O(N
2
) Factor of 2 and structure of processing algorithm 

     The ALU sequencing problem shows a well known factor of 2 issue present in many O(N
2
) 

parallel algorithms such as those in direct simulations of astrophysical stems. We initially 

calculate in parallel the Distance D(i,j) between points (sequences) i and j. This is done in 

parallel over all processor nodes selecting criteria i < j (or j > i for upper triangular case) to avoid 

calculating both D(i,j) and the identical D(j,i). This can require substantial file transfer as it is 



18 

  

unlikely that nodes requiring D(i,j) in a later step will find that it was calculated on nodes where 

it is needed.    

 For example the MDS and PW (PairWise) Clustering algorithms described in Fox, Bae et al. 

(2008), require a parallel decomposition where each of N processes (MPI processes, threads) has 

1/N of sequences and for this subset {i} of sequences stores in memory D({i},j) for all sequences  

j and the subset {i} of sequences for which this node is responsible. This implies that we need D 

(i,j) and D (j,i) (which are equal) stored in different processors/disks. This is a well known 

collective operation in MPI called either gather or scatter. 

4.4.4 Dryad Implementation 

We developed a DryadLINQ application to perform the calculation of pairwise SW-G 

distances for a given set of genes by adopting a coarse grain task decomposition approach which 

requires minimum inter-process communication to ameliorate the higher communication and 

synchronization costs of the parallel runtime. To clarify our algorithm, let’s consider an example 

where N gene sequences produces a pairwise distance matrix of size NxN. We decompose the 

computation task by considering the resultant matrix and groups the overall computation into a 

block matrix of size DxD where D is a multiple (>2) of the available computation nodes. Due to 

the symmetry of the distances D(i,j) and D(j,i) we only calculate the distances in the blocks of 

the upper triangle of the block matrix as shown in figure 3 (left). The blocks in the upper triangle 

are partitioned (assigned) to the available compute nodes and an “Apply” operation is used to 

execute a function to calculate (N/D)x(N/D) distances in each block. After computing the 

distances in each block, the function calculates the transpose matrix of the result matrix which 

corresponds to a block in the lower triangle, and writes both these matrices into two output files 

in the local file system. The names of these files and their block numbers are communicated back 
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to the main program. The main program sort the files based on their block numbers and performs 

another “Apply” operation to combine the files corresponding to a row of blocks in a single large 

row block as shown in the figure 3 (right). 

 
 

Figure 3. Task decomposition (left) and the DryadLINQ vertex hierarchy (right) of the DryadLINQ implementation 

of SW-G pairwise distance calculation application. 

 

4.4.5 MPI Implementation 

The MPI version of SW-G calculates pairwise distances using a set of either single or multi-

threaded processes. For N gene sequences, we need to compute half of the values (in the lower 

triangular matrix), which is a total of M = N x (N-1) /2 distances. At a high level, computation 

tasks are evenly divided among P processes and execute in parallel. Namely, computation 

workload per process is M/P.  At a low level, each computation task can be further divided into 

subgroups and run in T concurrent threads.  Our implementation is designed for flexible use of 

shared memory multicore system and distributed memory clusters (tight to medium tight coupled 

communication technologies such threading and MPI). We provide options for any combinations 

of thread vs. process vs. node as shown in figure 4. The real computation workload per parallel 

unit is decided by M / (T x P x # nodes).  
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Figure 4. Task decomposition (left) and the MPI (right) implementation of SW-G pairwise distance calculation 

application. 
 

As illustrated in figure 4, the data decomposition strategy runs a “space filling curve through 

lower triangular matrix” to produce equal numbers of pairs for each parallel unit such as process 

or thread. It is necessary to map indexes in each pairs group back to corresponding matrix 

coordinates (i, j) for constructing full matrix later on. We implemented a special function 

"PairEnumertator" as the convertor.  We tried to limit runtime memory usage for performance 

optimization. This is done by writing a triple of i, j, and distance value of pairwise alignment to a 

stream writer and the system flushes accumulated results to a local file periodically. As the final  

stage, individual files are merged to form a full distance matrix.   

5. Evaluations 

5.1 Introduction 

For our evaluations, we used three compute clusters (details are shown in Table 3) with two 

32-node clusters have almost identical hardware configurations and one latest 32-node cluster of 

24 core machines with Infiniband connections. DryadLINQ and the MPI application that 

performs SW-G computation were run on the Windows cluster (Ref B, Ref C), while the 

Hadoop, CGL-MapReduce, and other MPI applications were run on the Linux cluster (Ref A). 
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We measured the performance of these applications, and present the results in terms of parallel 

overhead defined for Parallelism P by 

f(P) = [P * T(P) – T(1)] / T(1)                        (1) 

where P denotes parallelism (e.g. processes, threads, map tasks) used, and T denotes time as a 

function of the number of parallel processes used. T(1) is replaced in practice by T(S) where S is 

the smallest number of processes that can run the job. We used Hadoop release 0.20, the 

academic release of DryadLINQ, Microsoft MPI, and OpenMPI version 1.3.2 for our 

evaluations. 

Table 3. Different computation clusters used for the analyses 

Feature Linux Cluster (Ref A) Windows Cluster (Ref B) Windows Cluster (Ref C) 

# Node 32 32 32 

CPU Intel(R) Xeon(R) CPU L5420  

2.50GHz 

Intel(R) Xeon(R) 

CPU L5420  2.50GHz 

Intel(R) Xeon(R) CPU E7450  

2.40GHz 

# CPU / # 

Cores 

2/8 2/8 4/24 

Total Cores 256 256 768 

Memory 32GB 16 GB 48 GB 

Disk 1 Disk of Western Digital 

Caviar RE 160 GB SATA 7200 

2 Disks of 1000GB (1TB) 

Ultrastar A7K1000 7200 

2 HP 146GB 10K 2.5 SAS HP 

SP HDD 

Network Giga bit Ethernet Giga bit Ethernet 20 Gbps Infiniband 

Operating 

System 

Red Hat Enterprise Linux 

Server release 5.3 - 64 bit 

Windows Server Enterprise - 

64 bit 

Windows Server 2008 HPC 

Edition (Service Pack 1) 

5.2 The CAP3 and Particle Physics Case Studies 

The results of our performance measurements for CAP3 and Particle Physics are shown in 

figures 5-8.  
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Figure 5. Performance of the CAP3 application – 

average time (in seconds) against the number of gene 

reads processed. 

Figure 6. Performance of the HEP data analysis 

application – average time (in seconds) against the 

amount of input data processed (in Giga bytes). 

 
Figure 7. Overhead induced by different parallel 

programming runtimes for the Kmeans Clustering 

application – overhead against the number of 2D data 

points clustered (Note: Both axes are in log scale) 

 
Figure 8. Overhead induced by different parallel 

programming runtimes for the matrix multiplication 

application – overhead against the dimension of an input 

matrix. 
 

From these results, it is clearly evident that the cloud runtimes perform competitively well 

for both the “Map-only” and the “Map-reduce” style applications.  In the HEP data analysis, both 

the CGL-MapReduce and DryadLINQ access input data from local disks, where the data is 

partitioned and distributed beforehand. Currently, HDFS can be accessed using Java or C++ 

clients only, and the ROOT – data analysis framework developed at CERN- interpretable scripts 

are not capable of accessing data from HDFS.  Therefore, we placed the input data in the IU Data 

Capacitor – a high performance parallel file system based on the Lustre file system, which allows 

each map task in Hadoop to directly access data from this file system.  The performance results 

shows that this dynamic data movement in the Hadoop implementation incurred considerable 

overhead to the computation, while the ability of reading input data from local disks gave 

significant performance improvement to both DryadLINQ and CGL-MapReduce, as compared to 

the Hadoop implementation. 

5.3 Kmeans and Matrix Multiplication Case Studies 

For iterative class of applications, cloud runtimes show considerably high overheads, 
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compared to the MPI and CGL-MapReduce versions of the same applications; the results shown 

in figures 7 and 8 imply that, for these types of applications, we still need to use high 

performance parallel runtimes or use alternative approaches. (Note: The negative overheads 

observed in the matrix multiplication application are due to the better utilization of a cache by 

the parallel application than the single process version). CGL-MapReduce shows a close 

performance closer to the MPI for large data sets in the case of Kmeans clustering and matrix 

multiplication applications, an outcome which highlights the benefits of supporting iterative 

computations and the faster data communication mechanism present in the CGL-MapReduce.  

5.4 ALU Sequence Analysis Case Study 

5.4.1 Performance of Smith Waterman Gotoh SW-G Algorithm 

We performed the Dryad and MPI implementations of ALU SW-G distance calculations on 

two large data sets and obtained the following results.  

Table 4 Comparison of DryadLINQ and MPI technologies on ALU sequencing application with SW-G algorithm 

Technology Total Time 

(seconds) 

Time per Pair 

(milliseconds) 

Partition Data 

(seconds) 

Calculate and 

Output 

Distance(seconds) 

 

Merge files 

(seconds) 

Dryad 50,000 sequences 17200.413  0.0069 2.118  17104.979  93.316  

35,339 sequences 8510.475  0.0068 2.716 8429.429  78.33 

MPI 50,000 sequences 16588.741 0.0066 N/A 13997.681 2591.06 

35,339 sequences 8138.314 0.0065 N/A 6909.214 1229.10 

 

There is a short partitioning phase for DryadLINQ and then both approaches calculate the 

distances and write out these to intermediate files as discussed in section 4. We note that merge 

time is currently much longer for MPI than DryadLINQ while the initial steps are significantly 

faster for MPI. However the total times in table 4 indicates that both MPI and DryadLINQ 

implementations perform well for this application with MPI a few percent faster with current 

implementations. As expected, the times scale proportionally to the square of the number of 
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distances. On 744 cores the average time of 0.0067 milliseconds per pair that corresponds to 

roughly 5 milliseconds per pair calculated per core used. The coarse grained Dryad application 

performs competitively with the tightly synchronized MPI application. It proves once more the 

applicability of the Cloud technologies for the composable applications. 

5.4.2  Threaded Implementation 

       Above we looked at using MPI with one process per core and we compared this with a 

threaded implementation with each process having several threads.  Labeling configuration as t x 

m x n for t threads per process, m MPI processes per node and n nodes, we compare choices of t 

m and n in figure 9.                    

 
Figure 9.  Performance of ALU Gene Alignments for different parallel patterns 

 

The striking result for this step is that MPI easily outperforms the equivalent threaded version 

of this embarrassingly parallel step. In figure 9, all the peaks in the overhead correspond to 

patterns with large values of t. Note that the MPI intra-node 1x24x32 pattern completes the full 

624 billion alignments in 2.33 hours – 4.9 times faster than threaded implementation 24x1x32. 

This 768 core MPI run has a parallel overhead of 1.43 corresponding to a speed up of 316.   

The SW-G alignment performance is probably dominated by memory bandwidth issues, and 
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we are pursuing several points that could affect this though it is not at our highest priority as SW-

G is not the dominant step. We have tried to identify the reason for the comparative slowness of 

threading. Using Windows monitoring tools, we found that the threaded version has about a 

factor of 100 more context switches than in the one thread per process MPI version. This could 

lead to a slow down of the threaded approach and correspond to Windows handing of paging of 

threads with large memory footprints.  

6. The Performance of MPI on Clouds 

After the previous observations, we analyzed the performance implications of cloud for 

parallel applications implemented using MPI. Specifically, we were trying to find the overhead 

of virtualized resources, and understand how applications with different communication-to-

computation (C/C) ratios perform on cloud resources. We also evaluated different CPU core 

assignment strategies for VMs, in order to understand the performance of VMs on multi-core 

nodes.  

Table 5. Computation and the communication complexities of the different MPI applications used. 

Application Matrix multiplication Kmeans Clustering Concurrent Wave Equation 

Description Implements Cannon’s 

Algorithm  

 

Assume a rectangular 

process grid (figure 1- 

left) 

Implements Kmeans Clustering 

Algorithm 

 

A fixed number of iterations are 

performed in each test 

A vibrating string is 

decomposed (split) into 

points, and each MPI 

process is responsible for 

updating the amplitude of a 

number of points over time. 

Grain size (n) The number of points in a 

matrix block handled by 

each MPI process 

The number of data points 

handled by a single MPI process 

Number of points handled 

by each MPI process 

Communication 

Pattern 

Each MPI process 

communicates with its 

neighbors both row wise 

and column wise  

All MPI processes send partial 

clusters to one MPI process 

(rank 0). Rank 0 distribute the 

new cluster centers to all the 

nodes 

In each iteration, each MPI 

process exchanges boundary 

points with its nearest 

neighbors 

Computation per 

MPI process 
O( Ѝὲ

3
)  ὕὲ ὕὲ 

Communication 

per MPI process 
O( Ѝὲ

2
) = O(n)  ὕ1  ὕ1  
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C/C 
O

1

Ѝὲ
 ὕ

1

ὲ
 ὕ

1

ὲ
 

Message Size 
Ѝὲ

2
= n Ὀ ï Where D is the number of 

cluster centers. 

ὈḺὲ 

Each message contains a 

double value 

Communication  

routines used 

MPI_Sendrecv_replace() MPI_Reduce() 

MPI_Bcast() 

MPI_Sendrecv() 

 

Commercial cloud infrastructures do not allow users to access the bare hardware nodes, in 

which the VMs are deployed, a must-have requirement for our analysis. Therefore, we used a 

Eucalyptus-based cloud infrastructure deployed at our university for this analysis. With this 

cloud infrastructure, we have complete access to both virtual machine instances and to the 

underlying bare-metal nodes, as well as the help of the administrators; as a result, we could 

deploy different VM configurations, allocating different CPU cores to each VM. Therefore, we 

selected the above cloud infrastructure as our main test bed. 

For our evaluations, we selected three MPI applications with different communication and 

computation requirements, namely, (i) the Matrix multiplication, (ii) Kmeans clustering, and (iii) 

the Concurrent Wave Equation solver. Table 5 highlights the key characteristics of the programs 

that we used as benchmarks. 

6.1 Benchmarks and Results 

The Eucalyptus (version 1.4) infrastructure we used is deployed on 16 nodes of an iDataplex 

cluster, each of which has 2 Quad Core Intel Xeon processors (for a total of 8 CPU cores) and 32 

GB of memory. In the bare-metal version, each node runs a Red Hat Enterprise Linux Server 

release 5.2 (Tikanga) operating system. We used OpenMPI version 1.3.2 with gcc version 4.1.2. 

We then created a VM image from this hardware configuration, so that we would have a similar 

software environment on the VMs once they were deployed. The virtualization is based on the 

Xen hypervisor (version 3.0.3). Both bare-metal and virtualized resources utilized giga-bit 



27 

  

Ethernet connections. 

When VMs are deployed using Eucalyptus, it allows us to configure the number of CPU 

cores assigned to each VM image. For example, with 8 core systems, the CPU core allocation 

per VM can range from 8 cores to 1 core per VM, resulting in several different CPU core 

assignment strategies. In an Amazon EC2 infrastructure, the standard instance type has ½ a CPU 

per VM instance (Evangelinos and Hill 2008). In the current version of Eucalyptus, the minimum 

number of cores that we can assign for a particular VM instance is 1; hence, we selected five 

CPU core assignment strategies (including the bare-metal test) listed in Table 6. 

Table 6.Different hardware/virtual machine configurations used for our performance evaluations. 

Ref Description Number of CPU cores 

accessible to the virtual 

or bare-metal node 

Amount of memory (GB) 

accessible to the virtual or 

bare-metal node 

Number of virtual 

or bare-metal 

nodes deployed 

BM Bare-metal node 8 32 16 

1-VM-8-core 1 VM instance per 

bare-metal node 

8 30 (2GB is reserved for 

Dom0) 

16 

2-VM-4- core 2  VM instances per 

bare-metal node 

4 15 32 

4-VM-2-core 4 VM instances per 

bare-metal node 

2 7.5 64 

8-VM-1-core 8 VM instances per 

bare-metal node 

1 3.75 128 

 

We ran all the MPI tests, on all 5 hardware/VM configurations, and measured the 

performance and calculated speed-ups and overheads. We calculated two types of overheads for 

each application using formula (1). The total overhead induced by the virtualization and the 

parallel processing is calculated using the bare-metal single process time as T(1) in the formula 

(1). The parallel overhead is calculated using the single process time from a corresponding VM 

as T(1) in formula (1). 

    In all the MPI tests we performed, we used the following invariant to select the number of 

parallel processes (MPI processes) for a given application. 

Number of MPI processes = Number of CPU cores used 
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For example, for the matrix multiplication application, we used only half the number of 

nodes (bare-metal or VMs) available to us, so that we had 64 MPI processes = 64 CPU cores. 

(This is mainly because the matrix multiplication application expects the MPI processes to be in 

a square grid, in contrast to a rectangular grid). For Kmeans clustering, we used all the nodes, 

resulting in a total of 128 MPI processes utilizing all 128 CPU cores. Some of the results of our 

analysis highlighting the different characteristics we observed are shown in figures 10 - 17. 

 
Figure 10. Performance of the matrix multiplication 

application – average time (in seconds) against the size 

of a matrix (Number of MPI processes = 64). 

 

 

Figure 11. Speed-up of the matrix multiplication 

application – Speedup against the number of MPI 

processes = number of CPU cores used (Fixed matrix 

size = 5184x5184). 

 
Figure 12. Performance of Kmeans clustering – average 

time (in seconds) against the number of 2D data points 

clustered (Number of MPI Processes = 128 ) 

 
Figure 13. Speed-up of the Kmeans clustering – speedup 

against the number of MPI processes = number of CPU 

cores used (Number of data points = 860160 ) 
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Figure 14. Total overhead of the Kmeans clustering – 

overhead against the 1/ grain size, grain size = number 

of 2D data points per parallel task (Number of MPI 

Processes = 128 ) 

 
Figure 15. Parallel overhead of the Kmeans clustering – 

parallel overhead against 1/grain size (Number of MPI 

Processes = 128 ) 

 
Figure 16. Performance of the Concurrent Wave Solver 

– average time (in seconds) against the number of points 

computed (Number of MPI Processes = 128 ) 

 
Figure 17. Total overhead of the Concurrent Wave 

Solver – overhead against 1/grain size, grain size = 

number of points assigned per parallel task (Number of 

MPI Processes = 128 ) 
 

 

For the matrix multiplication, the graphs show very close performance characteristics in all 

the different hardware/VM configurations. As we expected, the bare-metal has the best 

performance and speedup values, compared to the VM configurations (apart from the region 

close to the matrix size of 4096x4096, where the VM performed better than the bare-metal. We 

have performed multiple tests at this point, and found that it is due to the cache performances of 

the bare-metal node). After the bare-metal, the next best performance and speed-ups were 

recorded in the case of 1-VM per bare-metal node configuration, in which the performance 

difference was mainly due to the overhead induced by the virtualization. However, as we 
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increased the number of VMs per bare-metal node, the overhead increased as well. At the 81 

processes, the 8-VMs per node configuration shows about a 34% decrease in speed-up compared 

the bare-metal results. 

In Kmeans clustering, the effect of virtualized resources is much clearer than in the case of 

the matrix multiplication. All VM configurations show a lower performance compared to the 

bare-metal configuration. In this application, the amount of data transferred between MPI 

processes is extremely low compared to the amount of data processed by each MPI process, and 

also, in relation to the amount of computations performed. Figure 14 and figure 15 show the total 

overhead and the parallel overhead for Kmeans clustering under different VM configurations. 

From these two calculations, we found that, for VM configurations, the overheads are extremely 

large for data set sizes of less than 10 million points, for which the bare-metal overhead remains 

less than 1 (<1 for all the cases).  For larger data sets such as those of 40 million points, all 

overheads reached less than 0.5. The slower speed-up of the VM configurations (shown in figure 

13) is due to the use of a smaller data set (~800K points) to calculate the speed-ups. The 

overheads are extremely large for this region of the data sizes, and hence, it resulted in lower 

speed-ups for the VMs. 

Concurrent wave equation splits a number of points into a set of parallel processes, and each 

parallel process updates its portion of the points in some number of steps. An increase in the 

number of points increases the amount of computations performed. Since we fixed the number of 

steps in which the points were updated, we obtained a constant amount of communication in all 

the test cases, resulting in a C/C ratio of O(1/n).  In this application also, the difference in 

performance between the VMs and the bare-metal version was clearer, and at the highest grain 

size, the total overhead of 8-VMs per node is about 7 times higher than the overhead of the bare-
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metal configuration. The performance differences between the different VM configurations 

became smaller with the increase in grain size. 

From the above experimental results, we can see that the applications with lower C/C ratios 

experienced a slower performance in virtualized resources. When the amount of data transferred 

between MPI processes is large, as in the case of the matrix multiplication, the application is 

more susceptible to the bandwidth than the latency. From the performance results of the matrix 

multiplication, we can see that the virtualization has not affected the bandwidth considerably. 

However, all the other results show that the virtualization has caused considerable latencies for 

parallel applications, especially with smaller data transfer requirements. The effect on latency 

increases as we use more VMs in a bare-metal node.   

According to the Xen para-virtualization architecture (Barham, Dragovic, et al. 2003), 

domUs (VMs that run on top of a Xen para-virtualization) are not capable of performing I/O 

operations by themselves. Instead, they communicate with dom0 (privileged OS) via an event 

channel (interrupts) and the shared memory, and then the dom0 performs the I/O operations on 

behalf of the domUs. Although the data is not copied between domUs and dom0, the dom0 needs 

to schedule the I/O operations on behalf of the domUs. Figure 18(left) and figure 18 (right) 

shows this behavior in the 1-VM per node and 8-VMs per node configurations that we used. 

Figure 18. Communication between dom0 and domU when 1-VM per node is deployed (left). Communication 

between dom0 and domUs when 8-VMs per node were deployed (right). 

 

In all the above parallel applications we tested, the timing figures measured correspond to the 
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time for computation and communication inside the applications. Therefore, all the I/O 

operations performed by the applications are network-dependent. From figure 19 (right), it is 

clear that Dom0 needs to handle 8 event channels when there are 8-VM instances deployed on a 

single bare-metal node. Although the 8 MPI processes run on a single bare-metal node, since 

they are in different virtualized resources, each of them can only communicate via Dom0. This 

explains the higher overhead in our results for 8-VMs per node configuration. The architecture 

reveals another important feature as well -  that is, in the case of the 1-VM per node 

configuration, when multiple processes (MPI or other) that run in the same VM communicate 

with each other via the network, all the communications must be scheduled by the dom0. This 

results in higher latencies. We could verify this by running the above tests with LAM MPI (a 

predecessor of  OpenMPI, which does not have improved support for in-node communications 

for multi-core nodes). Our results indicate that, with LAM MPI, the worst performance for all the 

test occurred when 1-VM per node is used.  For example, figure 19 shows the performance of 

Kmeans clustering under bare-metal, 1-VM, and 8-VMs per node configurations. This 

observation suggests that, when using VMs with multiple CPUs allocated to each of them for 

parallel processing, it is better to utilize parallel runtimes, which have better support for in-node 

communication. 

 

Figure 19. LAM vs. OpenMPI (OMPI) under different VM configurations 
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Several others have also performed relevant research on the performance implications of the 

virtualized resources.  Youseff, Wolski, et al. (2006)  presents an evaluation of the performance 

impact of Xen on MPI. According to their evaluations, the Xen does not impose considerable 

overheads for HPC applications.  However, our results indicate that the applications that are 

more sensitive to latencies (smaller messages, lower communication to computation ratios) also 

experience higher overheads under virtualized resources, and this overhead increases as more 

and more VMs are deployed per hardware node. From their evaluations, it is not clear how many 

VMs they deployed on the hardware nodes, or how many MPI processes were used in each VM. 

According to our results, these factors cause significant changes in possible results. Running 1-

VM per hardware node produces a VM instance with a similar number of CPU cores, such as in 

a bare-metal node. However, our results indicate that, even in this approach, if the parallel 

processes inside the node communicate via the network, the virtualization may produce higher 

overheads under the current VM architectures. 

Evangelinos and Hill (2008) discuss  the details of their analysis of the performance of HPC 

benchmarks on EC2 cloud infrastructure. One of the key observations noted in their paper is that 

both the OpenMPI and the MPICH2-nemsis show extremely large latencies, while the LAM 

MPI, the GridMPI, and the MPICH2-scok show smaller smoother latencies. This observation is 

similar to what we observed with the LAM-MPI in our tests, and the same explanation holds 

valid for their observation as well. 

Walker (2008) presents benchmark results of the performance of HPC applications using 

“high CPU extra large” instances provided by EC2, and on a similar set of local hardware nodes. 

The local nodes are connected using infiniband switches; whereas Amazon EC2 network 

technology is unknown. The results indicate about a 40%-1000% performance degradation on 
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the EC2 resources, compared to the local cluster. Since the differences in operating systems and 

the compiler versions between the VMs and bare-metal nodes may cause variations in results, for 

our analysis, we used a cloud infrastructure over which we have complete control. In addition, 

we used similar software environments in both the VMs and the bare-metal nodes. In our results, 

we noticed that applications that are more susceptible to latencies experience higher performance 

degradation (around 40%) under virtualized resources. Bandwidth does not seem to be a 

consideration in private cloud infrastructures. 

Gavrilvska, Kumar et al. (2007) discuss several improvements over the current virtualization 

architectures to support HPC applications such as HPC hypervisors and self-virtualized I/O 

devices.  We notice the importance of such improvements and research. In our experimental 

results, we used hardware nodes with 8 cores, and we deployed and tested up to 8VMs per node 

in these systems. Our results show that the virtualization overhead increases with the number of 

VMs deployed on a hardware node. These characteristics will have a larger impact on systems 

having more CPU cores per node. A node with 32 cores running 32 VM instances may produce 

very large overheads under the current VM architectures. 

7. Conclusions and Future Work 

We have described several different studies of clouds and cloud technologies on both real 

applications and standard benchmark. These address different aspects of parallel computing 

using either traditional (MPI) or the new cloud inspired approaches. We find that cloud 

technologies work well for most pleasingly-parallel problems (“Map-only and “Map-reduce” 

classes of applications). In addition, their support for handling large data sets, the concept of 

moving computation to data, and the better quality of services provided such as fault tolerance 

and monitoring, all serve to simplify the implementation details of such problems. Applications 
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with complex communication patterns observe higher overheads when implemented using cloud 

technologies, and even with large data sets, these overheads limit the usage of cloud technologies 

for such applications. Enhanced MapReduce runtimes such as CGL-MapReduce allows iterative 

style applications to utilize the MapReduce programming model, while incurring minimal 

overheads, as compared to the other runtimes such as Hadoop and Dryad. 

 Handling large data sets using cloud technologies on cloud resources is an area that needs 

more research. Most cloud technologies support the concept of moving computation to data 

where the parallel tasks access data stored in local disks. Currently, it is not clear to us how this 

approach would work well with the VM instances that are leased only for the duration of use. A 

possible approach is to stage the original data in high performance parallel file systems or 

Amazon S3 type storage services, and then move data to the VMs each time they are leased to 

perform computations.  

  MPI applications that are sensitive to latencies experience moderate-to-higher overheads 

when performed on cloud resources, and these overheads increase as the number of VMs per 

bare-hardware node increases. For example, in Kmeans clustering, 1-VM per node shows a 

minimum of an 8% total overhead, while 8-VMs per node shows at least a 22% overhead. In the 

case of the Concurrent Wave Equation Solver, both these overheads are around 50%. Therefore, 

we expect the CPU core assignment strategies, such as ½ of a core per VM, to produce very high 

overheads for applications that are sensitive to latencies.   Applications that are not susceptible to 

latencies, such as applications that perform large data transfers and/or higher 

Communication/Computation ratios, show minimal total overheads in both bare-metal and VM 

configurations. Therefore, we expect that the applications developed using cloud technologies 

will work fine with cloud resources, because the milliseconds-to-seconds latencies that they 
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already have under the MapReduce model will not be affected by the additional overheads 

introduced by the virtualization. This is also an area we are currently investigating. We are also 

building applications (biological DNA sequencing) whose end-to-end implementation from data 

processing to filtering (data-mining), involves an integration of MapReduce and MPI (Fox, Bae 

et al. 2008). 
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