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1. Introduction 

Cloud Computing has long being identified as 
a key enabling technology for Internet of 
Things applications. We have developed an 
open source framework called IoTCloud[1] 
to connect IoT devices to cloud services. 
IoTCloud was developed as part of a research 
funded by AFOSR for Cloud-Based 
Perception and Control of Sensor Nets and 
Robot Swarms. IoTCloud consists of; a set of 
distributed nodes running close to the devices 
to gather data; a set of publish-subscribe 
brokers to relay the information to the cloud 
services and a distributed stream processing 
framework (DSPF) coupled with batch 
processing engines in the cloud to process the 
data and return (control) information to the 
IoT devices. Real time applications execute 
data analytics at the DSPF layer achieving 
streaming real-time processing. Our open-
source IoTCloud platform [2] uses Apache 
Storm[3] as the DSPF, RabbitMQ[4] or 
Kafka[5] as the message broker and an 
OpenStack academic cloud[6] (or bare-metal 
cluster) as the platform. To scale the 
applications with number of devices we need 
distributed coordination among parallel tasks 
and discovery of devices; both achieved with 
a ZooKeeper[7] based coordination and 
discovery service.  
 
In general a real time application running in a 
DSPF can be modeled as a directed graph 

consisting of streams and stream processing tasks. Stream tasks are at the nodes of the graph and streams are the 
edges connecting the nodes. A stream is an unbounded sequence of events flowing through the edges of the graph 
and each such event consists of data represented in some format. The processing tasks at the nodes consume input 
streams and produces output streams. A distributed stream processing framework provides the necessary API and 
infrastructure to develop and execute such applications in a cluster of computation nodes. The main tasks of a DSPF 
include 1. Providing an API to develop streaming applications 2. Distributing the stream tasks in the cluster and 
managing the life cycle of tasks 3. Creating the communication fabric 4. Monitoring and gathering statistics about 
the applications 5. Provide mechanisms to recover from faults. These frameworks generally allow the same task to 
be executed in parallel and provide rich communication channels among the tasks. Some DSPF’s allow the 
applications to define the graph explicitly and some create the graph dynamically at run time from implicit 
information. 

Figure 1 IoTCloud Architecture 



For most streaming applications latency is of utmost importance and the system should be able to recover fast 
enough from faults for the normal processing to continue with minimal effect to the applications. A detailed study 
of recovery methods possible for streaming applications is available in [8]. In our work we term a real time 
applications that produces correct answers but violates timing requirements as having performance faults. This 
proposal addresses (with same mechanisms) both explicit hardware/software and performance faults. 
 

We are exploring cloud controlled real time IoT applications in two dimensions. 
In one dimension there are computationally intensive algorithms for processing 
device data that can benefit from cloud based processing for real time response. 
These methods are powerful but impossible to run near the devices due to high 
computational and specialized hardware requirements. In the other dimension 
there are applications that have to be scaled to support vast number of devices and 
are inherently suitable for central data processing. We are developing a parallel 
particle filtering based SLAM [9, 10] algorithm and Deep learning based 
drone[11] control algorithm both fit in to the first category. As an application to 
second category, we are developing a robot swarm algorithm for n-body collision 
avoidance [12-14] that can scale for large number of robots. We have made good 
progress in the parallel particle filtering algorithm and n-body collision avoidance 
algorithm, having working versions with very good performance characteristics. 
The deep learning based drone control algorithm is at the beginning stages and we 
are making progress on that front. The parallel SLAM and n-body collision 
avoidance algorithms use Turtlebot[15] as the robot and ROS[16] as the SDK for 
connecting to the robot. The overall parallel SLAM application is shown in Figure 
2. 
 
Through the work we have done in developing these applications we have 

identified shortcomings in the current technologies, current and future requirements. We will continue to drive and 
evaluate IoTCloud extensions, termed IoTCloud++, for scaling with performance guarantees with these applications 
and hope to add other applications in the future. 
 
2. Streaming Application Challenges for IoT Cloud Controller 
 
We present five categories of streaming applications based on challenges they present to the backend Cloud control 
system. 
1) Set of independent events where precise time sequencing unimportant. Example: independent search requests or 

tweets from users 
2) Time series of connected small events where time ordering important. Example: streaming audio or video; robot 

monitoring 
3) Set of independent large events where each event needs parallel processing with time sequencing not critical 

Example: processing images from telescopes or light sources with material or biological sciences. 
4) Set of connected large events where each event needs parallel processing with time sequencing critical. Example: 

processing high resolution monitoring (including video) information from robots (self-driving cars) with real 
time response needed 

5) Stream of connected small or large events that need to be integrated in a complex way. Example: tweets or other 
online data where we are using them to update old and find new clusters rather just classifying tweets based on 
previous clusters as in 1) i.e. where we update model as well as using it to classify event. 

These 5 categories can be considered for single or multiple heterogeneous streams. Our initial work has identified 
difficulties in meeting real time constraints in cloud controlled IoT due to either the intrinsic time needed to process 

Figure 2 Parallel SLAM 
Application  



events or due to fluctuations in processing time caused by virtualization, multi-stream interference and messaging 
fluctuations. Figure 3a shows the fluctuations we observed with RabbitMQ and Kafka with minimal processing in 
Apache Storm and Figure 3b show fluctuations in processing Kinect data in Storm from a Turtlebot with RabbitMQ. 
Large computational complexity in event processing is naturally addressed by using parallelism in the Storm bolts 
but that also can lead to further sensitivity to fluctuations. Currently IoTCloud can handle 1) automatically and 3) 
with user designed parallelism. The other cases require careful tuning on a case by case basis and still can see 
unexpected large fluctuations in processing time that currently we don’t address except by over-provisioning. 

 
Figure 2a 

 
Figure 3b 

Figure 2a Fluctuations in Time of IoTCloud using RabbitMQ and Kafka with Minimal Processing in Storm         
Figure 2b Fluctuation in Time of IoTCloud with processing Kinect data from TurtleBot with RabbitMQ    

This proposal will build IoTCloud++ where we enhance IoTCloud to allow real-time guarantees and fault tolerance 
in both execution and performance. We will achieve this autonomic behavior by allowing dynamic replication and 
elastic parallelism in a self-monitored environment. This work will be delivered as an enhancement to Storm. 
 
4. Related Work  
 
Industrial companies are realizing the need of data analytics driven approaches to support efficient operations at all 
levels to reduce the costs and be innovative. The machines are getting intelligent with software controls and 
communication to outside services. The industries can benefit immensely from real time central management to 
deploy, manage, upgrade, and decommission these intelligent machines. Concepts like Brilliant machines[17] by GE 
Software is pushing the industry towards such connected and intelligent infrastructure. A Brilliant machine is 
connected to the Industrial internet, can run software that will make the machines react to changes in data and its 
environment both in operation and configuration and can communicate with other machines. Software Defined 
Machines (SDM) is a software environment to program such machines with a generic API hiding the underlying 
details such as hardware details. A SDM for a brilliant machine can run close to the machine or can be hosted in the 
cloud. Having generic distributed open platforms such as IoTCloud to execute both data analytics and SDMs in cloud 
will be beneficial for such applications. 
 
Distributed stream processing provides frameworks to deploy, execute and manage event based applications at large 
scale. Years of research have produced software frameworks capable of executing distributed computations on top 
of event streams. Examples of such early event stream processing frameworks include, Aurora[18], Borealis[19], 
StreamIt[20] and SPADE[21]. With the emergence of Internet Scale applications in the recent years, new distributed 
stream processing systems like, Apache S4[22], Apache Storm[3], Apache Samza[23], Spark Streaming[24] and 
commercial solutions including Google Millwheel[25] and Amazon Kinesis[26] have been developed. 
 
Apache Storm applications are developed in the model of the graphical dataflow we introduced earlier. A Storm 
application consists of Spouts, Bolts, and Streams. Spouts and Bolts are the nodes in the graph connected by streams 
and a single such application is called a Topology. Storm uses its own servers to manage and distribute the tasks 
among the cluster nodes. The communication fabric is built on top of TCP using the Netty library. Storm provides at 

0

50

100

150

200

Ti
m

e 
in

 m
s

Messages over time

Kafka RabbitMQ

20

30

40

50

Ti
m

e 
in

 m
s

Messages over time



least once processing guarantees at its core. Apache Samza is another open source stream-processing framework 
developed on top of Kafka message broker and Apache Yarn. Samza applications are similar to Storm applications 
in the graph structure and differences between Storm and Samza are technical differences in how they distribute the 
tasks and how they manage the communications. Because Samza messaging layer is backed by a file based message 
broker Kafka, its latency is expected to be higher compared to other processing engines.  
 
Apache Spark streaming extends the Spark batch processing system. Spark is a batch processing system targeting 
iterative algorithms and interactive analytics problems on top of large data sets. In streaming case Spark reads the 
input from a stream source like a message queue. It uses small batches of incoming data as input to the running jobs, 
creating the illusion of continuous processing. Such batching of the inputs does not seem very attractive for real time 
applications.  S4 is another fully distributed real time stream processing framework. The processing model is inspired 
by map-reduce and uses a key-value based programming model. S4 creates a dynamic network of processing elements 
(PEs) and these are arranged in a DAG at runtime. One of the biggest challenges in PE architecture is that, key 
attributes with very large domains can create large number of PEs in the system at a given time. 
 
A comprehensive list of optimizations possible to reduce the latency of the stream processing applications are 
mentioned in [27]. These optimizations include features like operator reordering, load balancing, fusion, fission etc. 
All the operations mentioned are targeted towards optimizing the average performance metrics of the system. For 
real time applications individual tuple latency is also very important.  
 
There are many open source message brokers available that can act as gateways to the stream processing platforms. 
Such brokers includes ActiveMQ[28], RabbitMQ[4], Kafka[5], Kestrel, HornetMQ etc. ActiveMQ, RabbitMQ, 
Kestrel and HornetMQ are all in memory message brokers with optional persistent storages. On the other hand Kafka 
is a store first broker backed by a message log. Compared to other message brokers Kafka has better parallel 
consumption semantics, scalability and fault tolerance due to its topic partition and replication across the cluster. Our 
measurements [2] showed that RabbitMQ illustrated in fig. 2, has comparable or superior performance compared to 
other brokers and Kafka has large fluctuations in latency. We will revisit this question when the performance 
enhancements of IoTCloud++ are implemented. 
 
Real time applications with critical time requirements in the vanilla Java virtual machine is a challenge itself due to 
garbage collection, virtual machine etc. There have been efforts to improve the Java runtime and JDK to fit these 
requirements [29-31]. Most of these studies are related to real time requirements in embedded systems that control 
the devices. In our platform the actual software controlling the IoT devices will be running near the device and the 
cloud processing will enhance this processing for stages where some latency (~few 100ms) can be tolerated.  
 
Robot Operating System (ROS) is an open source platform that offers a set of software libraries to build robotics 
applications. Popular off the shelf robots have ROS applications already written and these applications combined 
with the available wide range of tools such as visualization tools, simulators can create a powerful environment for 
the researchers. In some of our cloud applications we use ROS as the first layer to connect to the robot, collect data 
and control it. We transform the ROS data structures to data structures required by cloud applications at the gateways.    
 
Open standards like MQTT[32] and MTConnect[33] is being developed to bridge the gap between the application 
data requirements and the device data. IoTCloud support the MQTT transport and can transfer data between gateways 
and cloud using MQTT. If the devices send the data in MQTT protocol, they can be send without transformation at 
the gateways directly to the cloud. 
 
5. Research Plan for Robust Open Source Cloud IoT Controller with Real 
Time QoS 



 
A major goal is to achieve real-time QoS in spite of fluctuations in the computation time. The architecture of the new 
IoTCloud++ platform is shown in Figure 3. In this architecture, we propose to dynamically replicate the streaming 
computation tasks within cloud clusters to achieve good performance in at least one replica. This replication will not 
be universal but rather done only when achieving QoS demands it as for example when monitoring shows that initial 
task is delayed. This as-needed replication will drastically reduce overhead from replication in many cases. We will 
dynamically identify the streaming tasks that require replication and replicate at the task level rather than at the 
streaming application level. This dynamic replication of streaming tasks will be implemented for Apache Storm 
described above. Apache Storm consist of two types of servers called Nimbus and Supervisor. Nimbus manages the 
streaming applications running in the cluster. Each Supervisor consists of a fixed number of workers capable of 
executing the stream tasks belonging to a job. To dynamically increase the Storm servers, we will use a resource 
manager such as Apache Yarn. Apache Storm is already ported to run on top of Apache Yarn and we will extend this 
framework to support elastic cluster resizing.  
 
A resource management framework such as Yarn only works with the allocated computation resources. We will use 
the IaaS layer to dynamically scale computation nodes in the cluster. We have extensive expertise at the infrastructure 

level where we can instantiate systems on 
demand that can then support the dynamic 
scaling of the system. We will explore the 
Google Compute engine for the 
infrastructure level. Streaming 
computation nodes will be managed by 
the resource management layer and this 
will be controlled by a separate 
component. We can either use the 
messaging system or a distributed key 
value store to replicate the state as done in 
MillWheel[25]. The fluctuations in time 
at the broker are from fig. 3 much less 
(than those in processing stage) in 
RabbitMQ but important in Kafka. We 
will scale the brokers at runtime to 
minimize such effects to the system by 
monitoring performance of brokers. Then 
a controller will directly use the IaaS 
infrastructure to scale the brokers as 
needed by increasing the number of 
assigned VMs. 
 
To scale an application, that receives 
input from multiple sources as a single 

stream and needs to differentiate each source, the larger stream must be partitioned in to sub streams according to the 
source. This can be done with current processing frameworks but when parallel processing and state tracking is 
needed the user code becomes complex. Also for parallel processing the scheduling is not adequate because each task 
will get sub task for every sub stream. We will solve this by introducing new data abstractions and scheduling at the 
sub stream level and task level. IoTCloud project is largely built on top of Apache Open Source projects. We have 
extensive experience in working with Apache projects (as user, committer and ASF member) and will contribute the 
results of this research back to the open source community.  

Figure 4 IOTCloud++ Architecture 
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