
Information Services for Dynamically Assembled Semantic Grids

Mehmet S. Aktas
(1), (2)

, Geoffrey C. Fox
(1), (2), (3)

, Marlon Pierce
(1)

(1) Community Grids Laboratory, Indiana University

501 N. Morton Suite 224, Bloomington, IN 47404
{maktas, gcf, mpierce}@cs.indiana.edu

http://www.communitygrids.iu.edu/index.html

(2) Computer Science Department, School of Informatics, Indiana University

(3) Physics Department, College of Arts and Sciences, Indiana University

Abstract

Many large semantic systems can be described as

Semantic Grids of Semantic Grids with large amounts

of relatively static services and associated semantic

information combined with multiple dynamic regions

(sessions or subgrids) where the semantic information

is changing rapidly. We design a hybrid Information

Service supporting both the scalability of large

amounts of relatively slowly varying data and a high

performance rapidly updated Information Service for

dynamic regions. We use the two web service

standards UDDI and WS-Context in our system.

1. Introduction

E-Science Semantic Grids can often be thought of as

dynamic collection of semantic subgrids where each

subgrid is a collection of modest number of services

that assembled for specific tasks such as forecasting

earthquakes [1]. We term an actively interacting

(collaborating) set of managed services as a Gaggle

where services are put together for particular

functionality. Semantic Grid may consist of several

Gaggles each featuring intense local activity with less

intense inter-gaggle interactions. Each Gaggle

maintains most dynamic information which is the

session related metadata generated as result of

interactions among Grid/Web Services. Gaggles are

also called as Grid Processes in the China National

Grid. An infrastructure of the Semantic Grid is

discussed in [2] where Grid Processes may be defined

as cooperative processes that support management and

integration of business processes. We also note that

Gaggles may be composed from other “sub” Gaggles

hierarchically.

Extensive metadata requirements of both the worldwide

Grid and smaller sessions or “gaggles of grid services”

that support local dynamic action may be investigated

in diverse set of application domains such as sensor

and collaboration grids. For example, workflow-style

Geographical Information Systems (GIS) Grids such as

the Pattern Informatics (PI) application [1] require

information systems for storing both semi-static,

stateless metadata and transitory metadata needed to

describe distributed session state information. The PI

application is an earthquake simulation and modeling

code integrated with streaming data services as well as

streaming map imaginary services for earthquake

forecasting.

Handling information requirements of these

applications requires high performance, fault tolerant

information systems. These information systems must

be decentralized, relocate metadata to nearby locations

of interested entities and provide efficient access,

storage of the shared information, as the dynamic

metadata needs to be delivered on tight time constraints

within a Gaggle. Information Services support

discovery and handling of services through metadata

and are vital components of Grids [3].

We identify the following problems in Information

Services supporting both traditional and Semantic

Grids. First, Grid Information Services need to be able

to support dynamically assembled service collections

gathered at any one time to solve a particular problem.

Most of the traditional Grid Information Services [4-5]

however are not built along this model. Second,

Information Services should scale in numbers and

geographical area. Most existing solutions [4-5]

however have centralized components and do not

address scalability and high performance issues. Third,

Information Services need to be able to take into

account user demand changes when making decisions

on metadata access and storage. Fourth, Information

Services need to be able to provide uniform interface

for publishing and discovery of both dynamically

generated and static information. Existing Grid

Information Services however do not provide such

capabilities. We therefore see this as an important area

of investigation. This paper presents our design of an

architecture to address the identified problems above.

We describe a novel architecture for fault tolerant and

high performance Information Services in order to

manage distributed, dynamic session related metadata

while providing consistent, uniform interface to both

static and dynamic metadata.

The main contributions of this paper are two-fold.

First, we present a novel architecture for a WS-Context

[13] complaint metadata catalog service supporting

distributed or centralized paradigms. We use an

extended version of UDDI [14] for slowly varying

metadata and present a uniform and consistent interface

to both short-lived dynamic and slowly varying quasi-

static metadata. We explore the application of context

(session-related dynamic metadata) management in

Grid systems to correlate activities in workflow-style

applications, by providing a novel approach for

management of widely distributed, shared session-

related dynamic metadata. We investigate the problem

of distributed session management in Grid applications,

by providing an approach for distributed event (session

metadata) management system enabling session failure

recovery or replay/playback capabilities. We also

address lack of search capabilities in Grid Information

Services, by providing uniform search interface to both

interaction independent and conversation-based

metadata enabling service discovery through events.

Our second contribution is the application of topic-

based publish/subscribe methods to the problems of

dynamic replication methodology to support dynamic

metadata. We utilize a multi-publisher, multicast

communication middleware and a topic-based

publish/subscribe messaging system as a

communication middleware to exchange messages

between peers.

This paper is organized as follows. Section 2 reviews

the state of art in existing information services and

replica hosting environments. Section 3 reviews our

design for information systems to support Gaggles

paying particular attention to distributed data

management aspects of the system. In Section 4, we

summarize and discuss future work.

2. Background

Most existing decentralized solutions to Information

Services can be broadly categorized by the manner of

in which decentralization is realized such as a)

hierarchical, structured and b) unstructured, peer-to-

peer (P2P). In structured architectures, components of

the system are strictly controlled and may depend on

each other for publishing and discovery of information.

For an example, Globus Monitoring and Discovery

System (MDS4) [4] has a hierarchical architecture

where there is a single top-level Information Service

that presents a uniform interface to clients to access

data, while the data is collected by lower-level

information providers. Another example is the

structured P2P systems where the nodes in the systems

are equally enabled and controlled and service

information is disseminated to all nodes [6].

Unstructured P2P architectures can be characterized as

systems where there is lack of control on the

capabilities of the system nodes and where there is no

organizational structure. For an example, Relational

Grid Monitoring Architecture (R-GMA) [5] presents a

P2P architecture where consumers directly connect to

information providers to retrieve the data without

intermediary nodes. An extensive survey on Grid

Information Services can be found at [7]. Architectures

with pure decentralized storage models have focused

on the concept of distributed hash tables (DHT) [6].

DHT approach assumes possession of an identifier

such as hash table that identifies the service that need

to be discovered. Each node forwards the incoming

query to a neighbor based on the calculations made on

DHT. Although the DHT approach provides good

performance on routing messages to corresponding

nodes, it has various limitations such as primitive query

capabilities on the database operations. Here, we

design an architecture which can be defined as an

unstructured P2P approach to P2P/Grid environment.

We use multi-publisher message broadcasting through

a topic-based publish/subscribe messaging system,

which support access and storage decisions among

distributed nodes.

Well-defined descriptions of resources, services and

data constitute metadata. Metadata can be represented

using varying metadata models such as XML Schema

or Semantic Web languages (RDF, OWL, etc.). Here,

we are mainly concerned with managing the metadata

and delivering to clients, not with knowledge

processing. We presume the metadata models to be

application-specific and not defined by us. To this end,

we are concentrating on distributed computing

problems of managing metadata in the Semantic Grid.

We use replication, a well-known and commonly used

technique to improve the quality of metadata hosting

environments, in our architecture. Sivasubramanian et

al. [8] give an extensive survey on reviewing research

efforts on designing and developing World Wide Web

replica hosting environments, as does Robinovich in

[9], paying particular attention to dynamic replication.

As the nature of our target data is dynamic, we focus on

data hosting systems that are handling with dynamic

data. These systems can be discussed under following

important design issues: a) distribution of client

requests among data replicas b) selection of hosting

environments for replica placement c) consistency

enforcement.

Distribution of client requests is the problem of

redirecting a client to the most appropriate replica

server. Most existing solutions to this problem are

based on DNS-Server such as in [10-11]. These

solutions utilize a redirector/proxy server that obtains

physical location of collection of data-systems hosting

a replica of the requested data, and choose one to

redirect client’s request. Replica placement is another

issue that deals with selecting data hosting

environments for replica placement and deciding how

many replicas to have in the system. Existing solutions,

that apply dynamic replication, monitor various

properties of the system when making replica

placement decisions [11-12]. For instance, Radar [11]

replicates/migrates dynamic content based on changing

client demands. Spread [12] considers the path between

the data-system and client and makes decisions to

replicate dynamic content on that path. The

consistency enforcement issue has to do with ensuring

all replicas of the same data to be the same. Various

techniques have been introduced in consistency

management. For instance, the Akamai project [10]

introduces versioning where a version number is

encoded to document identifier, so that client would

only fetch the updated data from the corresponding

data hosting system. Radar [11] applies primary-copy

approach where an update can be done only on the

primary-copy of the data.

Our architecture differs from web replica hosting

systems in the following ways. First, the intended use

of our architecture is not to be a web-scale hosting

environment. The scale of our target systems is in the

order of a few dozen to at most a thousand entities

participating in a session. Our target domains range

from collaboration systems such as GlobalMMCS [17]

project to geographical information systems such as

Pattern Informatics GIS-Grid. The participant entities

of these systems might dynamically generate metadata

during a session. Such metadata can be expected to be

small in size and big in the volume depending on the

Grid application. Second, existing solutions to dynamic

replication assume all data-hosting servers to be ready

and available for replica placement and ignore

“dynamism” in the network topology. In reality, data-

systems can fail anytime and may present volatile

behavior. We use a pure Peer-to-Peer approach, which

is based on multi-publisher multicast mechanism, when

distributing access and storage requests to data-

systems.

3. Information Services

We have designed a novel architecture to Information

Services presenting a uniform interface to support

handling and discovery of not only quasi-static,

stateless metadata, but also session related metadata. In

order to be compatible with existing Grid/Web Service

standards, we based the interface of our system on the

WS-Context and UDDI Specifications. We have

extended and integrated both specifications to provide

uniform and consistent service interface to both

dynamic and static metadata.

Our approach is to utilize the existing state-of-art

systems for handling and discovering static metadata

and address the problems of distributed management of

dynamic metadata. To do this, on receiving

querying/publishing metadata requests, the system

applies following steps to process service metadata.

First, the system separates dynamic and static portions

of the metadata. For instance, static metadata could be

throughput or location of a service whereas dynamic

metadata could be session identifier pointing to a

workflow session in which the service is participating.

Second, the system delegates the task of handling and

discovery of static portion of the metadata to UDDI. As

we research UDDI Specifications to integrate with our

system, we have encountered various limitations in its

capabilities which we address in a separate paper [15].

Third, the system itself provides handling and

discovery using dynamic portions of the metadata in

the metadata replica hosting environment.

The intended use of our approach is to support

information in dynamically assembled Semantic Grids

where “real-time” decisions are being made on which

services to tie together in a dynamic workflow to solve

a particular problem. One may think of WS-Context

complaint Information Services as the metadata catalog

for semantic metadata as in an RDF triple store. The

semantic metadata expresses the relationships between

resources and the applications that access the metadata

catalog deduct further (inferred) information. In our

design, the distinctive semantic richness comes from

the highly dynamic architecture with metadata from

more than two services (in contrast WS-Transfer, WS-

Metadata Exchange Specifications that only easily get

semantic enhancement from the two services that

exchange metadata). We discuss various research

issues in building Information Services for dynamically

assembled Semantic Grids in the following section.

3.1. Fault Tolerant High Performance Information

Services

We have considered two application domains from

sensor/GIS and collaboration grids to demonstrate the

use of our system: Global Multi-media and

Collaboration System (GlobalMMCS) [17] and PI GIS-

Grid. GlobalMMCS is a peer to peer collaboration

environment where videoconferencing sessions can

take place. Any number of widely distributed services

can attend to a collaboration session. GlobalMMCS

requires persistent archival of session metadata to

provide replay/playback and session failure recovery

capabilities. The PI GIS-Grid is a workflow-style Grid

application which requires storage of transitory

metadata needed to correlate activities of participant

entities. Both application domains require a

decentralized metadata hosting environment which can

support both scalability (of large amounts of

information) and performance requirements (of rapidly

updated dynamic information). To this end, we identify

two important research issues that need to be answered

in our design: fault tolerance and high performance.

We use replication technique to provide fault tolerance

and high performance which improves the quality of

our data hosting environment. If one of the redundant

storage elements goes down, it automatically consults

remaining elements to restore itself. The replication

technique can also lead into high performance by

reducing the time between a client issuing a request and

receiving the corresponding response. As the nature of

our data is very dynamic, we use dynamic data

replication technique, where data replicas may be

created, deleted, or migrated among hosting data-

systems based on changing user demands. Two

important aspects of dynamic replication are access and

storage algorithms.

Access Algorithm: The access algorithm distributes

client requests to appropriate replica hosting data-

systems. Our model is based on pure Peer-to-Peer

approach where each node can probe all other nodes in

the network to look up metadata. A primary role of the

access algorithm is the discovery of one or more data-

systems hosting the requested metadata. This discovery

process consists of two steps: data-system discovery

and access. The first step concerns with selection of

data-systems that can answer the client requests. The

second step is to inform the data-system that is most

appropriate for handling the request. In the first step, to

find metadata, a node sends a probe message to all

other nodes through a software multicast mechanism;

target data-systems that host the metadata matching the

probe send a response directly to requestor node. Here,

response message consists of information regarding

how well the data-system can handle this query. For

instance, such information may include proximity

information between the client and the data-system. On

receiving response messages, the requestor node

chooses the most appropriate data-system that can

handle the request. In the second step, the requestor

node sends the client request to the chosen data-system

particularly asking to handle the request.

Storage Algorithm: Storage algorithm selects data-

systems for replica placement and decides how many

replicas to have in the system. In our design, storage

decisions are made autonomously at each node without

any knowledge of other replicas of the same metadata.

The storage decision is made based on the client

requests served by that node. Storage process consists

of two separate steps such as metadata placement and

metadata creation. The first step has to do with

selection of data-systems that should hold the replica

and the second step has to do with metadata replica

creation. In the first step, each node (data-system) runs

the storage algorithm which defines client request

thresholds for replica creation and deletion. If a

metadata entry is in high demand which is above a pre-

defined threshold, then the metadata is replicated. If a

metadata entry is in low demand which is below a pre-

defined threshold, it will be deleted. To replicate

metadata, a node sends a “storage” message to all other

nodes through a software multicast mechanism; target

data-systems, that have available space, send a respond

to directly requestor node. Here, the response message

consists of various decision metrics such as client

proximity information. On receiving the response

messages, replica placement algorithm chooses the

most appropriate data-system to replicate the metadata.

In the second step, the requestor node sends a replica

creation message directly to the chosen data-system

asking to store a replica of metadata in consideration.

This process creates a dynamic metadata storage in

which metadata is moved based on changing client

demands.

Multi-publisher Multicasting Communication

Middleware: An importing aspect of our system is that

we utilize software multicasting capability which is an

important communication medium supporting the

ability to send out access and storage requests to the all

nodes of the system. Any node can publish and

subscribe to topics which in turn create a multi-

publisher multicast broker network as communication

middleware. Here, the publisher does not need to know

the location and identities of receivers. It publishes a

message to a topic to which all nodes subscribe. We

use NaradaBrokering’s (NB) [16] publish/subscribe

mechanism as a communication middleware for

message exchanges between peers.

3.2. System Components

Our proposed architecture consists of various modules

such as Query and Publishing, Expeditor, Access,

Storage and Sequencer Modules. Architectural design

of our system is illustrated in Figure 1.

Context Query and Publishing Modules: These

modules receive client requests through a uniform

service interface for publishing/discovering dynamic

and static metadata. The client query/publishing

requests are processed and dynamic metadata parts of

the queries are extracted. Then, the request is

forwarded to Expeditor Module to find the results.

Likewise, static metadata portion of the requests is

relayed to external UDDI Service to publish/discover

services through static metadata.

Expediter Module: This is a generalized caching

mechanism. Each node has a particular expediter. One

consults the expediter to find how to get (or set)

information about a dataset in an optimal fashion. The

expediter is roughly equivalent to replica catalog in

classic Grids.

Access Module: This module runs the access

algorithm mentioned above. It support request

distribution by publishing messages to topics in NB

network. It also receives messages (in respond to client

request) coming from other peers and forward these

query messages to Expediter Module. The Access

Module locates the nodes that are closest in terms of

network distance with lowest load balance from the

node requesting access to the communal node in

question. It also takes into account the load balance of

each responding data-system when choosing the right

data-system.

Figure 1 – Architecture of an Information
Service running on each peer

Storage Module: This module runs the storage

algorithm. It interacts with the Expediter Module and

applies the storage algorithm to all local Context

metadata. If the metadata is decided to be replicated,

then the storage module advertises this replication by

multicasting it to available peers through NB

publish/subscribe mechanism. The storage module also

interacts with the Sequencer module in order to label

each incoming metadata with a time stamp.

Sequencer Module: This module ensures that an order

is imposed on actions/events that take place in a

session. The Sequencer Module interacts with the

Storage Module and labels each metadata which will be

replicated in this replicated metadata hosting

environment. The Sequencer Module interacts with

Network Time Protocol (NTP) clients to achieve

synchronized timestamps among the distributed nodes.

When receiving a query, the Query Module first

processes the query and extracts the dynamic metadata

portion of the query. Then, the Query Module forwards

the query to Expediter, where the Expeditor Module

checks whether the requested data is in Context Spaces.

If the Expeditor Module can not find the result in

Context Space or if the requested metadata is expired,

then the query is forwarded to the JDBC Handler to

query the data in local database. If the query asks for

external metadata, then the Expediter will forward the

query to Access Module, where the Access Module

multicast a probe message to available Information

Services through NB and communicates with the

Information Services that are the original data sources

for this query. The query is responded by an

Information Service which may be the best qualified

Information Service is to handle this query.

4. Conclusions and Future Work

In this paper, we have identified an important gap in

Information Services for Grids that is lack of support

for dynamic information in dynamically assembled

Semantic Grids. We have presented an architecture that

addresses key issues of managing dynamic metadata

such as a) providing an efficient metadata access and

storage methodology by taking into account changes in

user demands and b) providing a P2P approach for

access/storage request distribution among the peers of

the system to capture the dynamic behavior both in

metadata and the network topology. We have discussed

status of our implementation and report initial

performance results from a prototype that is applied to

sensor and collaboration grids.

Work remains to further develop a distributed metadata

hosting environment by employing novel dynamic

replication techniques and to evaluate the system as

whole through extensive performance tests.

Acknowledgement: This work is supported by the

Advanced Information Systems Technology Program

of NASA's Earth-Sun System Technology Office.

5. References

[1] Galip Aydin, Mehmet S. Aktas, Geoffrey C. Fox,

Harshawardhan Gadgil, Marlon Pierce, Ahmet Sayar.

SERVOGrid Complexity Computational Environments

(CCE) Integrated Performance Analysis, Grid2005, Seattle

[2] H. Zhuge. Semantic Grid: Scientific Issues,

Infrastructure, and Methodology, Communications of the

ACM. 48 (4) (2005)117-119.

[3] B. Plale, P. Dinda, and G. Von Laszewski. Key Concepts

and Services of a Grid Information Service. In Proceedings

of the 15th International Conference on Parallel and

Distributed Computing Systems (PDCS 2002), 2002.

[4] Monitoring & Discovery System (MDS4) Web Site is

available at http://www.globus.org-/toolkit/mds

[5] A. Cooke, A.Gray, L. Ma, W. Nutt, J. Magowan, P.

Taylor, R. Byrom, L. Field, S. Hicks, and J. Leake. R-GMA:

An Information Integration System for Grid Monitoring.

Proceedings of the 11th International Conference on

Cooperative Information Systems, 2003.

[6] Ratnasamy, Sylvia et al. A Scalable Content-Addressable

Network. Proc. ACM SIGCOMM, pp 161-172, August 2001.

[7] Serafeim Zanikolas and Rizos Sakellariou. A Taxonomy

of Grid Monitoring Systems. Future Generation Computer

Systems, 21(1), January 2005, pp. 163--188.

[8] Sivansubramanian S., Szymaniak M., Pierre G., Steen

M.V. Replication for Web Hosting Systems. ACM

Computing Surveys. Vol. 6, No. 3, Sept. 2004, pp. 291-334.

[9] M. Rabinovich. Issues in Web Content Replication.

Bulleting of the IEEE Computer Society Technical

Committee on Data Engineering, 1998.

[10] Dilley, J., Maggs, B., Parikh, J., Prokop, H., Sitaraman,

R., and Weihl, B. Globally distributed content delivery. IEEE

Internet Computing 6, 5 (Sept.), 50-58. 2002

[11] M. Rabinovich, I. Rabinovich, R. Rajaraman, and A.

Aggarwal. A Dynamic Object Replication and Migration

Protocol for an Internet Hosting Service. Proc. 19th Int'l

Conf. Dist. Computing Systems, pp. 101-113, June 1999.

[12] P. Rodriguez, and S. Sibal. SPREAD: Scalable Platform

for Reliable and Efficient Automated Distribution Computer

Networks, vol. 33, nos. 1-6, pp. 33-49, June 2000.

[13] Bunting, B., Chapman, M., Hurley, O., Little M,,

Mischinkinky, J., Newcomer, E., Webber, J., and Swenson,

K. Web Services Context (WS-Context), available from

http://www.arjuna.com/library/specs/ws_caf_1-0/WS-

CTX.pdf

[14] Bellwood, T., Clement, L., and von Riegen, C. UDDI

Version 3.0.1: UDDI Spec Technical Committee

Specification. Available from http://uddi.org/pubs/uddi-

v3.0.1-20031014.htm.

[15] Mehmet S. Aktas, Galip Aydin, Geoffrey C. Fox,

Harshawardhan Gadgil, Marlon Pierce, Ahmet Sayar,

Information Services for Grid/Web Service Oriented

Architecture (SOA) Based Geospatial Applications,

Technical Report, June, 2005

[16] Shrideep Pallickara and Geoffrey Fox NaradaBrokering:

A Distributed Middleware Framework and Architecture for

Enabling Durable Peer-to-Peer Grids in Proceedings of

ACM/IFIP/USENIX International Middleware Conference

Middleware-2003, Rio Janeiro, Brazil June 2003. See also:

http://www.naradabrokering.org

[17] Wenjun Wu, Geoffrey Fox, Hasan Bulut, Ahmet Uyar,

Harun Altay “Design and Implementation of A Collaboration

Web-services system”, Journal of Neural, Parallel &

Scientific Computations (NPSC), Volume 12, 2004.

