
Using Cloud Computing for Scalable, Reproducible
Experimentation

Jonathan Klinginsmith
School of Informatics and Computing

Indiana University
Bloomington, IN, USA

jklingin@indiana.edu

Judy Qiu
School of Informatics and Computing

Indiana University
Bloomington, IN, USA

xqiu@cs.indiana.edu

ABSTRACT

Whether it be data generated from genomic sequencers, tele-

scopes, or other laboratory instruments, technology apparent

in many scientific disciplines is generating data at rates never

witnessed before. Scientists in the area of bioinformatics

are among the many who perform inductive experiments and

analyses on these data with the goal of answering scientific

questions. These computationally demanding experiments

and analyses have become a common occurrence, resulting

in a shift in scientific discovery, and thus leading to the term

eScience.

Reproducing controlled eScience experimental conditions

is a challenging task. To reproduce an eScience experiment,

the investigator must be able to recreate the original condi-

tions, including operating system, software installations and

configurations, and original data set. The challenge of repro-

ducibility is compounded when the experiment must be run

in a distributed manner.

In this work, we create a reproducible framework for the

construction of large-scale computing environments on top

of cloud computing infrastructures. We demonstrate how

this framework can reduce the challenges of experimental

reproducibility in large-scale eScience applications.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscella-
neous

General Terms

Design, Performance

Keywords

Cloud Computing, eScience, Reproducibility

1. INTRODUCTION & MOTIVATION

Data-intensive science is considered part of a rela-
tively new paradigm in the scientific discovery process
[19]. The term eScience [27] has been coined to help
explain the common themes and processes found in this
new shift in scientific thought. One common need across

all domains of eScience research is to have an infrastruc-
ture available with software configured to process large-
scale data and perform simulations to produce scientific
insight.
As a researcher investigating a scientific paper within

a particular eScience domain, it can be challenging to
reproduce the controlled conditions of the original au-
thors’ experiments. To fully reproduce the experiments
in the paper, one must have both the infrastructure and
software configured in the same manner, as well as have
access to the data used within the original experiment.
In many cases, having access to all these items is not
possible [42].
Even if the original data are not available, it should be

a reasonable expectation within the scientific commu-
nity for the experimental environment be reproducible.
If the infrastructure setup and the software installation
and configuration can be performed in a reproducible
manner then eScience researchers, who are tradition-
ally not system administrators, are much more enabled
at replicating or extending the experiments being inves-
tigated.
Therefore, in this work, we demonstrate through the

use of cloud computing along with infrastructure and
software automation the concept of scalable, reproducible
experimentation is an achievable goal. To this end, this
work enables eScience researchers to spend less time
on the system administration processes of recreating a
previous experiment and more time on enabling and ad-
vancing scientific thought in his/her particular domain.
Towards the goal of performing reproducible eScience
experiments in the cloud, we demonstrate the follow-
ing:

• The construction of computing framework, which
enables scalable, reproducible experimentation.

• A fully reproducible eScience experiment built on
top of the framework performed in academic or
commercial clouds.

1

2. BACKGROUND & RELATED WORK

2.1 Virtualization & Cloud Computing

Virtualization technology has opened the door to many
advances in computing. A virtual machine (VM) [26] is
a running instance of a computer where resources such
as memory and central processing units (CPUs) are al-
located through virtualization software. Cloud comput-
ing has emerged in recent years because of advances in
virtualization software. Companies such as Amazon,
Google, and Microsoft provide services to customers for
use of the virtual resources owned by them. The defi-
nition of cloud computing has taken many forms in the
academic community and industry. For this work, we
use the definitions and terms discussed in [16].
Cloud computing refers to the software, platforms,

and infrastructure services provided over the Internet
as well as the data centers offering these services. The
hardware and virtualization software running on top of
this hardware is termed a cloud. Providers of cloud
computing services offer application programming inter-
faces (APIs) as means with which customers subscribe
and interact. The lowest level of service available with
a cloud is termed Infrastructure as a Service (IaaS). At
this level, users provision virtual resources such as a VM
or a virtual block storage device. We consider this the
infrastructure layer whereabouts our framework inter-
acts with the cloud.

2.2 Experimentation & Reproducibility

Four properties of good experimentation are outlined
in [45]: 1) reproducibility, 2) extensibility, 3) revisabil-
ity, and 4) applicability. An experiment exhibits the
property of reproducibility if another researcher is able
to perform the experiment and produce the same result.
The properties of extensibility and revisability both dic-
tate that changes to conditions and modifications must
be possible for the experiment. Those changes may
be necessary for future expandability or if a modifica-
tion is needed for corrections to the original experiment.
Lastly, experimental parameters must be of realistic in
nature and resembling real-world conditions while al-
lowing for changes to thus promote applicability.
The limits of reproducibility were reviewed in [22]. In

this work, the author provides details of how stochas-
tic methods, such as the use of genetic algorithms, can
prevent an experiment from being fully reproducible.
Moreover, the finite nature of floating point precision
also limits numerical simulation reproducibility. Rela-
tive to this work, our framework demonstrates that even
if an exact numerical value cannot be reproduced, the
experimental conditions and execution should be repro-
ducible.
Experimental complexity and scalability are discussed

in [21]. In order to answer more difficult scientific ques-

tions, both of these conditions must increase. There-
fore, by advancing the processes for managing experi-
ments will lead to improvements in reproducibility and
experimental integrity.

2.3 Appliances & Clusters

Several works [23, 28] have outlined how virtual ap-
pliances can provide a reproducible environment for re-
searchers. In [23], the authors propose reproducibil-
ity as a two step process. First, by storing scientific
datasets in the cloud more researchers have access to the
data. Second, the authors introduce a concept called
Whole System Snapshot Exchange (WSSE) where the
entire computer system, including the operating sys-
tem, is copied so that other researchers can fully repli-
cate the in silico experiment. This same sentiment
is shared in [28]. The author states that by provid-
ing a pre-installed, pre-configured virtual machine the
original “laboratory” is provided in tact for future re-
searchers.
Our framework achieves the same outcome of repro-

ducible computational experiments; however, only a generic,
“golden” machine image is maintained within a cloud.
Then utilizing a configuration management tool, VMs
are fully installed and configured software installation
scripts at deployment run-time. Through this approach,
we are able to use the same software installation and
configuration scripts within the software layer in sepa-
rate clouds. Moreover, using an automation approach
to software installation and configuration management
provides the ability to build scalable architectures in the
cloud. The properties of scalability and elasticity have
gained much of cloud computing’s attention, which has
led to work in building virtual clusters.
A virtual cluster (VC) [25] is a set of VMs and any

corresponding storage, which operate as a whole to cre-
ate the presence of a single computational entity. The
ability to quickly provision a VC within a cloud com-
puting infrastructure is useful in many scenarios within
eScience experiments. For example, a researcher can
build the necessary environment closer to the data, es-
pecially as more public datasets are being stored in the
cloud [35]. Both [31, 15] discuss the how as the size of
data sets grow, and if the construction of a VC can be
performed in a straightforward manner, then it is pos-
sible to move the computing infrastructure to the data.
This is in contrast to moving the data to the location of
a dedicated high performance computing (HPC) clus-
ter, such as a research university’s supercomputer.
Other researchers have worked on bridging the gap

between dedicated physical clusters and the elasticity
of the cloud [30]. The concept of cloud bursting allows
one to utilize dedicated compute resources such as high
performance computing cluster or grids first before tak-
ing advantage of elasticity of the cloud.

2

2.4 Genomic Sequencing in the Cloud

Scientists in the area of genomic sequencing have been
performing research work in the cloud to provide the
necessary scale in both computing power and storage
[17]. The National Institutes of Health (NIH) announced
in late March 2012 the 1000 Genomes Project [11] data
are now available on the Amazon Cloud as a public
data set [35]. There are many recent works on the use
of cloud computing for bioinformatics and genomic se-
quencing analyses [47, 40, 43].

2.5 Cloud Computing Technologies

Research work is also being performed tools, tech-
nologies, and applications to create as well as manage
cloud infrastructures. Eucalyptus [37] is an open-source
cloud computing platform that provides IaaS capabili-
ties. Using Eucalyptus, one can create a cloud with a
compatible API to that of Amazon’s EC2 and S3. Dur-
ing this research, our framework was implemented and
tested both on Amazon as well as FutureGrid’s Euca-
lyptus cloud.
There are several configurationmanagement tools avail-

able for use in automating software configurations and
installations. Tools such as CFEngine [6] and Puppet
[9] have been created to manage and configure infras-
tructures and systems. In this work Chef [5] was chosen
as one of the open source software products to aide in
the framework implementation.
Other projects have built on top of these configu-

ration management tools to help launch and configure
independent VMs on IaaS clouds. One such tool is clou-
dinit.d [20].

3. REPRODUCIBLE FRAMEWORK

3.1 Separation of Concerns

The foundation to our reproducible framework is the
separation of interactions between an IaaS cloud com-
puting infrastructure (the infrastructure layer) and the
interactions of of a running virtual machine (the soft-
ware layer). This separation of concerns allows for the
reuse of software installation and configuration man-
agement scripts between clouds. Moreover, any differ-
ences in the IaaS cloud application programming inter-
face (API) are handled at the infrastructure layer.
Figure 1 details how a client machine interacts with

these two layers. For the infrastructure layer, the client
interacts with the IaaS cloud provider’s API whereas
within the software layer the client is executing com-
mands directly on the running virtual machine.

3.2 Software layer

The software layer is the one in which a researcher in-
teracts with the most often. This is where the scientists
interacts with applications and the operating system.

client client
VM

Software layerInfrastructure layer

Figure 1: Client interactions between the infrastructure
and software layers.

Figure 2 provides details of the software layers neces-
sary for a researcher to have a fully-configured running
virtual machine to execute an experiment. Each layer
within this running VM has a version associated with
it.
The base layer is the operating system. Installed on

the VM’s operating system layer are platform languages
and software. For example, compiled languages such as
C, C++, and Java as well as interpreted languages such
as Perl, Python, and Ruby are foundational languages
to many researchers work.

VM

OS

Platform Software

Application Software

Operating System

Compliers

Platform languages

Platform software

Domain-specific software

 and configurations

Figure 2: Operating system and software layers

Additionally, installed and configured on top of the
running operating system, the VM has platform soft-
ware and filesystems, which provide foundational com-
ponents for distributed systems. HPC/HTC schedul-
ing software, distributed file system software, and dis-
tributed computing frameworks such as Hadoop [7] are
all examples of platform technologies that domain-specific
researchers use perform distributed computing experi-
ments.
The final layer in the application stack is domain-

specific software. Domain-specific software is depen-
dent on both the operating system and the platform
technologies to be installed correctly.
When installing and configuration distributed sys-

tems, application configuration files must be populated
with values to allow machines to interact with one an-
other. For example, when configuring a Condor [44]
pool a file named condor config.local must be config-
ured on each node of the cluster. This configuration file
indicates which node in the pool is designated with the
role of Central Manager. Reproducing an experiment
that uses Condor as its scheduler must have its con-
dor config.local file be populated with a different value
than the Central Manager of original experiment. Fig-
ure 3 displays a Condor pool with an example of the
CONDOR_HOST variable populated in the condor config.local
file.

3

Central Manager

Submit

cm

Condor

Execute

execute0001

Condor

Execute

executeXXXX

Condor

OSOS OS

condor_config.local

CONDOR_HOST= cm

condor_config.local

CONDOR_HOST= cm

condor_config.local

CONDOR_HOST= cm

Figure 3: Condor pool with configured con-
dor config.local file

3.3 Framework Implementation

To implement the framework, two equivalent machine
images were created. The first, a Eucalyptus Machine
Image (EMI) was created in FutureGrid’s Eucalyptus
cloud. The second, an Amazon Machine Image (AMI)
was created in Amazon Web Service’s cloud. The fol-
lowing steps were performed in each cloud to make the
software layer consistent between the clouds.

• Launched a base CentOS 5.8 machine image (MI).

• Installed software configuration management open
source software (specifically, the chef-client ver-
sion 0.10.10).

• Registered the new machine image, which is con-
sidered the “golden” machine image within that
cloud.

Figure 4 provides a visual representation of the two
machine images created in separate IaaS cloud.

EMI

OS

chef-client

FutureGrid Eucalyptus

AMI

OS

chef-client

Amazon

Figure 4: Equivalent machine images (MI) were built
in IaaS separate clouds.

As opposed to storing fully configured virtual appli-
ances in the cloud, we store several other persistent ob-
jects that can be used to recreate the entire environ-
ment. Figure 5 presents the three objects that are per-
sisted in the cloud: 1) the“golden”machine images, 2) a
volume containing the software source code (e.g., tar.gz
files) and packages (e.g., RPMs), and 3) the software
installation and configuration management scripts.
Figure 6 demonstrates how the persistent objects are

used to reproduce eScience environments at scale. The
volume storing the software source code, software pack-
ages, and any data is attached to a deployment web

Volume

 Software and Data

Volume

Configuration Scripts

MI

OS

chef-client

Figure 5: Persistent objects stored in the cloud.

server. This web server distributes the software to all of
the running virtual machines. The second server hosts
the scripts for installing and configuring these specific
versions of software. This is the Chef server. There-
fore, a snapshot of a scalable eScience application is
persisted in the software artifacts and deployment in-
stallation and configuration scripts stored through this
framework. In the next section we use the implemen-
tation of this framework to test both scalability and
reproducibility.

Volume

 Software and Data

VM

Web Server

VM

Chef Server

Volume

Configuration Scripts

Each VM downloads versioned software and configuration scripts

eScience VM

Configured

Software

OS

eScience VM

Configured

Software

OS

eScience VM

Configured

Software

OS

Figure 6: Chef server and software web server install
and configure VMs.

4. EXPERIMENTS

4.1 Scalability

The first set of experiments test the feasibility and
scalability of our framework outlined in Figure 6. The
Condor pool pictured in Figure 7 was created in Fu-
tureGrid’s Eucalyptus cloud with four different execute
node counts: 10, 25, 50, and 100. For each of these pool
sizes, we performed the cluster deployment three times.
Figure 8 displays two charts. The top graph presents

the deployment run-time average and standard devia-
tion for each of the twelve deployment tests. As wit-
nessed from this graph, the more nodes requested for
the pool, the longer the deployment time to configure
the virtual cluster.

4

Storage

Central Manager

Submit

Condor

Gluster

Execute

Condor

Gluster

...

Execute

Condor

Gluster

OSOS OS

Figure 7: Scalability tests created a Condor pool.

The bottom chart begins to investigate the reasons
for the additional deployment time. A result of creat-
ing a “golden” image (with no pre-configured software),
is that each individual node must download, install,
and configure software at deployment run-time. The re-
sult of this on-the-fly configuration is longer deployment
times as the cluster size increases. Specifically because
the software must be transferred over the cloud’s net-
work from the web deployment server to each individual
node.
For clusters of size 10, the deployment on average

takes just over 40 seconds whereas for a 100 node clus-
ter the average deployment for a node is around 120
seconds. The second chart in Figure 8 presents the to-
tal received network traffic of the 100 execute nodes
during a deployment. As witnessed by the large spikes,
there are seconds during the deployment (around the
70 second mark, 80 second mark, and 120 second mark)
where as a whole, the entire pool is receiving over 200
MB of software.

10 25 50 100
0

20

40

60

80

100

120

140

160

Ti
m
e
 (
se

co
n
d
s)

Build Run Times per Cluster Size

0 20 40 60 80 100 120 140
Time (seconds)

0

50

100

150

200

250

R
e
ce

iv
e
d
 D

a
ta
 (
M
B
)

Network Traffic Received per Second - 100 Nodes

Figure 8: Node deployment times and network traffic
received

Another item of note in Figure 8 is the larger standard
deviation among the three tests of deployment 100 node
clusters. Figure 9 delves into the details of one 100 node
deployment.

The individual deployment times for each of the 100
nodes is presented in the top graph of Figure 9. The
length of the horizontal lines provides the total run
time for that particular node’s deployment. Some of
the first execute nodes begin completing their deploy-
ment as quickly as 80 seconds whereas the last nodes
to complete take up to 70 seconds longer. This chart
demonstrates why there is a larger standard deviation
for the 100 node deployments.
The second chart in Figure 9 demonstrates when the

Condor central manager recognizes the execute host has
been registered in the Condor pool. The Condor instal-
lation is the last step in the node deployment process
because all other software needs to be configured be-
fore the scheduler is to be enabled on the execute node.
Therefore, this second chart provides another view into
how many nodes have completed their deployment. One
can see the association between the deployment comple-
tion time and the Condor central manager registering
a new execute node in the pool. This bottom chart
demonstrates the elasticity or cloud-bursting capability
of the cloud. In this particular case, a 100 node cluster
has been created in 150 seconds.

0 20 40 60 80 100 120 140
0

20

40

60

80

100

N
o
d
e
 N
u
m
b
e
r

Node Deployment Time - 100 Nodes

0 20 40 60 80 100 120 140
Time (seconds)

0

20

40

60

80

100

N
o
d
e
s
R
e
g
is
te
re
d
 i
n
 P
o
o
l

Condor Execute Nodes in Pool

Figure 9: Individual deployments times and Condor
node counts.

These deployment experiments have demonstrated that
the framework can install and configure software up to
100 nodes. The upper limit of 100 was chosen only be-
cause of the amount of resources available within the
FutureGrid Eucalyptus cloud. Additionally, each of the
virtual machines created in these deployment experi-
ments were single core. Larger multi-core instance types
can also be chosen during deployment to increase the
scalability. For example, Amazon provides a variety
of instance types. One instance, named m2.2xlarge,
which is categorized as a high-memory instance has 13
EC2 Compute Units and 32 GB of memory [12]. A

5

100 node Condor pool with default configurations would
have 1,300 available slots and over 3 TB of total mem-
ory among the execute nodes.
The goal in these first set of experiments was to demon-

strate that the framework could install and configure
software at scale. The experimental goal for the second
set of experiments is to show how the framework can
be used to reproduce an eScience experiment, and in
particular in separate IaaS clouds.

4.2 Genomic Sequencing Use-Case

This experiment reproduces a specific genomic se-
quencing use-case in two separate clouds. Specifically,
the experiment will reproduce the transcription start
sites (TSS) detailed use-case [13]. The transcript start
sites use-case makes use of a dataset from a ChIP-Seq
analysis paper on histone methylations in the human
genome [18]. Details on the software and steps per-
formed to produce the experiment will be provided to
help bring clarity to details of the experiment.
There are four genomics applications used in this ex-

periment. The first is a Python module named HT-
Seq, which is used to analyze high-throughput genomic
sequencing assays [14]. The second is the Burrows-
Wheeler Aligner (BWA) [32], which is used for aligning
a genome to the reference genome. The SAM (Sequence
Alignment/Map) Tools application [33] is used for creat-
ing SAM formatted files, and their binary counterparts,
BAM files. Lastly, the Sequence Read Archive (SRA)
Toolkit [34] is used for data conversion out of the SRA
file format.
Table 1 lists the application software discussed above

as well as the other installed and configured software
needed to perform this experiment. This table does
not include the platform components such as operating
system packages or compilers necessary. All operating
system packages were hosted on the deployment web
server, as seen in Figure 6. The volume attached to the
deployment web server stored a snapshot of operating
system packages for the CentOS yum[10] repository as
well as the Extra Packages for Enterprise Linux (EPEL)
[39] yum repository. To control the experimental condi-
tions on the operating system packages, the deployment
web server in both clouds contained the same snapshot
of operating system packages from repositories on the
Internet.
Each application listed in Table 1 was also down-

loaded from its original site on the Internet to the de-
ployment web server in each individual cloud. All soft-
ware installation and configuration scripts were created
to accept configurable URLs for downloading software
during deployment. This implementation allowed for
controlling the version of application software.
The installation and configuration scripts were cre-

ated and stored in the Chef server hosted in each cloud.

Software Version

BWA [32] 0.6.1
Condor [46] 7.8.0
Cython [4] 0.16
HTSeq [14] 0.5.3p6
Python [38] 2.7.3
Matplotlib [29] 1.1.0
NumPy [36] 1.6.2
SAMtools [33] 0.1.18
SciPy [41] 0.10.1
SRA Toolkit [34] 2.1.10

Table 1: Software Installed and Configured.

File Name
Homo sapiens.GRCh37.67.gtf.gz [1]
Homo sapiens.GRCh37.67.dna.chromosome.1.fa.gz [2]
SRR001432.sra [3]

Table 2: Datasets

These software automation scripts provide the details
of every configuration value, and installation command
run to reproduce the installed environment. For ex-
ample, to configure and install the numerical Python
module NumPy [36], a Fortran compiler must be in-
stalled. Determining the correct Fortran compiler and
making sure the flags are set accordingly when compil-
ing NumPy is but one example of how installation and
configuration of the entire software stack can be chal-
lenging toward the goal of experimental reproducibility.
Through the use of software configuration management,
this complexity is reduced anyone needing to reproduce
the experiment.
The final piece of reproducing the experiment is hav-

ing access to the original data. Table 2 lists the original
files used to produce the charts. Similar to the software
applications above, each of these files were downloaded
to the deployment web server within each cloud from the
original site on the Internet so that they could be de-
ployed to the execute nodes when necessary. The sam-
ple numbered SRR001432 from the Short Read Archive
[8]. This sample is one of the H3K4me3 samples from
[18].
Table 3 outlines the high-level workflow executed to

produce the charts in Figure 10. The applications were
installed, and the workflow was executed in both the
FutureGrid Eucalyptus and Amazon to produce the two
TSS plots. Validating the data, we annotated one of the
plots with a gray box from −200 ≤ x ≤ 50 because of
a “significant dip in the signal was observed between
−200 to +50 for H3K4me3” [18].

6

1. Convert SRR001432.sra file to SRR001432.fastq

2. Gunzip Homo sapiens.GRCh37.67.gtf.gz → Homo sapiens.GRCh37.67.gtf

3. Extract chromosome 1 features from Homo sapiens.GRCh37.67.gtf → Homo sapiens.GRCh37.67 chrom1.gtf

4. Gunzip Homo sapiens.GRCh37.67.dna.chromosome.1.fa.gz → Homo sapiens.GRCh37.67.dna.chromosome.1.fa

5. Index Homo sapiens.GRCh37.67.dna.chromosome.1.fa

6. Align SRR001432.fastq to Homo sapiens.GRCh37.67.dna.chromosome.1.fa

7. Create SRR001432.sam

8. Create SRR001432.bam

9. Sort SRR001432.bam → SRR001432.sorted.bam

10. Index SRR001432.sorted.bam

11. Extract chromosome 1 from SRR001432.sorted.bam → SRR001432 head.bam

12. Use HTSeq[13] with Homo sapiens.GRCh37.67 chrom1.gtf and SRR001432 head.bam → TSS plot

Table 3: Steps to producing TSS plots

−3000 −2000 −1000 0 1000 2000 3000
0

20000

40000

60000

80000

100000

120000
TSS Coverage Plot

(a) TSS plot produced in AWS

−3000 −2000 −1000 0 1000 2000 3000
0

20000

40000

60000

80000

100000

120000
TSS Coverage Plot

(b) TSS plot produced in FutureGrid Eucalyptus

Figure 10: TSS plots produced in separate clouds

−3000 −2000 −1000 0 1000 2000 3000
0

20000

40000

60000

80000

100000

120000
TSS Coverage Plot

Figure 11: TSS plot annotated to confirm the significant
dip in signal between −200 ≤ x ≤ 50.

5. CONCLUSIONS & FUTURE WORK

We made evident in this work through the use of
cloud computing infrastructures and the automation
of software installation and configuration, that a re-
searcher can control experimental conditions to repro-
duce scalable eScience experiments and applications.
Two sets of experiments were performed. The first
tested scalability by deploying a virtual cluster with 100
execute nodes. The second reproduced a genomics ex-
periment in two separate clouds. Through these exper-
iments, we demonstrated the ability to construct scal-
able computing environments in different clouds, which
opens the opportunity for researchers to use our work
in academic or commercial clouds.

7

In the future we plan to extend this work in the
following directions. First, we plan to expand further
into the next generation sequencing pipelines to enable
bioinformaticians to embed workflows into our frame-
work so that these workflows can be constructed in
separate clouds. Additionally, we plan to extend this
framework into educational uses to help lower barriers
for people to use distributed environments. Incorporat-
ing our framework in with other monitoring tools like
Ganglia[24] to provide researchers with the ability to
monitor the experiment.

6. ACKNOWLEDGMENTS

This paper was developed with support from the Na-
tional Science Foundation (NSF) under Grant No. 0910812
to Indiana University for “FutureGrid: An Experimen-
tal, High–Performance Grid Test–bed.” Any opinions,
findings, and conclusions or recommendations expressed
in this material are those of the authors and do not nec-
essarily reflect the views of the NSF.

7. REFERENCES
[1] ftp://ftp.ensembl.org/pub/release-

67/gtf/homo sapiens/.
[2] ftp://ftp.ensembl.org/pub/release-

67/fasta/homo sapiens/dna/.
[3] ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-

instant/reads/ByRun/sra/SRR/SRR001/SRR001432/.
[4] C-extensions for python. http://www.cython.org/.
[5] Chef | Opscode. http://www.opscode.com/chef/.
[6] Configuration management software | open source

configuration management - CFEngine -
distributed configuration management.
http://cfengine.com.

[7] Hadoop.
[8] Home – SRA – NCBI.

http://www.ncbi.nlm.nih.gov/sra.
[9] Puppet labs: IT automation software for system

administrators. http://www.puppetlabs.com/.
[10] Yum. http://yum.baseurl.org/.
[11] A map of human genome variation from

population-scale sequencing. Nature,
467(7319):1061–1073, 10 2010.

[12] Amazon Web Services LLC. Amazon EC2
instance types.
http://aws.amazon.com/ec2/instance-types/.

[13] S. Anders. A detailed use case: TSS plots –
HTSeq v0.5.3p6 documentation. http://www-
huber.embl.de/users/anders/HTSeq/doc/tss.html.

[14] S. Anders. HTSeq: Analysing high-throughput
sequencing data with python – HTSeq v0.5.3p6
documentation. http://www-
huber.embl.de/users/anders/HTSeq/doc/index.html.

[15] P. Anedda, S. Leo, S. Manca, M. Gaggero, and
G. Zanetti. Suspending, migrating and resuming

hpc virtual clusters. Future Generation Computer
Systems, 26(8):1063 – 1072, 2010.

[16] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph,
R. H. Katz, A. Konwinski, G. Lee, D. A.
Patterson, A. Rabkin, I. Stoica, and M. Zaharia.
Above the clouds: A berkeley view of cloud
computing. Technical Report
UCB/EECS-2009-28, University of California at
Berkeley, 2009.

[17] M. Baker. Next-generation sequencing: adjusting
to data overload. Nat Meth, 7(7):495–499, 07
2010.

[18] A. Barski, S. Cuddapah, K. Cui, T.-Y. Roh, D. E.
Schones, Z. Wang, G. Wei, I. Chepelev, and
K. Zhao. High-resolution profiling of histone
methylations in the human genome. Cell,
129(4):823–837, 05 2007.

[19] G. Bell, T. Hey, and A. Szalay. Beyond the data
deluge. Science, 323(5919):1297–1298, 2009.

[20] J. Bresnahan, T. Freeman, D. LaBissoniere, and
K. Keahey. Managing appliance launches in
infrastructure clouds. In TeraGrid 2011, 2011.

[21] F. Desprez, G. Fox, E. Jeannot, K. Keahey,
M. Kozuch, D. Margery, P. Neyron, L. Nussbaum,
C. Perez, O. Richard, W. Smith, G. von
Laszewski, and J. Vöckler. Supporting
experimental computer science. Technical Report
326, Argonne National Laboratory, 2012.

[22] K. Diethelm. The limits of reproducibility in
numerical simulation. Computing in Science and
Engineering, 14(1):64–72, 2012.

[23] J. Dudley and A. Butte. In silico research in the
era of cloud computing. Nature Biotechnology,
pages 1181–1185, 2010.

[24] D. Federico, M. J. K. Sacerdoti, M. L. Massie,
and D. E. Culler. Wide area cluster monitoring
with ganglia. In IEEE International Conference
on Cluster Computing, 2003.

[25] I. Foster, T. Freeman, K. Keahey, D. Scheftner,
B. Sotomayor, and X. Zhang. Virtual clusters for
grid communities. In Proc. of the 6h IEEE Int.
Symp. on Cluster Computing and the Grid, pages
513–520, 2006.

[26] R. Goldberg. Survey of virtual machine research.
In IEEE Computer, pages 34–45, 1974.

[27] T. Hey, S. Tansley, and K. Tolle. Jim gray on
escience: A transformed scientific method.
Microsoft Research, 2009.

[28] B. Howe. Virtual appliances, cloud computing,
and reproducible research. Computing in Science
& Engineering, 99(PrePrints), 2012.

[29] J. Hunter, D. Dale, and M. Droettboom.
matplotlib. http://matplotlib.sourceforge.net/.

[30] H. Kim and M. Parashar. CometCloud: an
autonomic cloud engine. In Cloud Computing:

8

Principles and Paradigms, chapter 10. Wiley,
2011.

[31] S. Leo, P. Anedda, M. Gaggero, and G. Zanetti.
Using virtual clusters to decouple computation
and data management in high throughput
analysis applications. In Proc. of the Euromicro
Conference on Parallel, Distributed, and
Network-Based Processing, pages 411–415, 2010.

[32] H. Li and R. Durbin. Fast and accurate short read
alignment with burrows-wheeler transform.
Bioinformatics, 2009.

[33] H. Li, B. Handsaker, A. Wysoker, T. Fennell,
J. Ruan, N. Homer, G. Marth, G. Abecasis,
R. Durbin, and et. al. The sequence
alignment/map (sam) format and samtools.
Bioinformatics, 2009.

[34] National Center for Biotechnology Information.
Sra toolkit.
http://www.ncbi.nlm.nih.gov/Traces/sra/.

[35] NIH. 1000 genomes project data available on
amazon cloud. Press Release, March 2012.
http://www.nih.gov/news/health/mar2012/nhgri-
29.htm.

[36] Numpy developers. Scientific computing tools for
python – numpy. http://numpy.scipy.org/.

[37] D. Nurmi, R. Wolski, C. Grzegorczyk,
G. Obertelli, S. Soman, L. Youseff, and
D. Zagorodnov. The eucalyptus open-source
cloud-computing system. In Proc. of the 2009 9th

IEEE/ACM Int. Symp. on Cluster Computing
and the Grid, pages 124–131, 2009.

[38] Python Software Foundation. Python
programming language – official website.
http://www.python.org/.

[39] Red Hat. EPEL - FedoraProject.
http://fedoraproject.org/wiki/EPEL.

[40] M. C. Schatz, B. Langmead, and S. L. Salzberg.
Cloud computing and the dna data race. Nature
Biotechnology, 28(7):691—693, 2010.

[41] Scipy Community. Scipy. http://www.scipy.org/.
[42] S. Staff. Challenges and opportunities. Science,

331(6018):692–693, 2011.
[43] L. D. Stein. The case for cloud computing in

genome informatics. Genome Biology, 2010.
[44] T. Tannenbaum, D. Wright, K. Miller, and

M. Livny. Condor – a distributed job scheduler. In
Beowulf Cluster Computing with Linux. MIT
Press, 2001.

[45] Team. Algorithms for the grid: Inria research
proposal.
http://www.loria.fr/equipes/algorille/algorille2.pdf.

[46] The Condor Team. Condor project homepage.
http://research.cs.wisc.edu/condor/.

[47] D. Wall, P. Kudtarkar, V. Fusaro, R. Pivovarov,
P. Patil, and P. Tonellato. Cloud computing for
comparative genomics. BMC Bioinformatics,
11(1):259, 2010.

9

