
Thin Client Collaboration Web Services

Minjun Wang

EECS Department,
Syracuse University, U.S.A

Community Grid Lab,
Indiana University, U.S.A
501 N Morton, Suite 222,
Bloomington IN 47404
minwang@indiana.edu

Geoffrey Fox
Community Grid

Laboratory, Computer
Science Department,

School of Informatics and
Physics Department,

Indiana University, U.S.A
 gcf@indiana.edu

Marlon Pierce
Community Grid

Laboratory, Indiana
University, U.S.A

501 N Morton, Suite 224,
Bloomington IN 47404

mpierce@cs.indiana.edu

Abstract

In this paper we introduce some collaboration
applications, and the needs in changing them to Web
Services. We propose and describe the idea of Thin
Client Collaboration Web Services, and explore some
potential scenarios of this idea in which it shows its
merit and the freedom resulted in collaboration.

Such a Web Service has two sets of ports: User-
facing Input/Output ports and Resource-facing
Input/Output ports. The user-facing I/O contacts a
Web Service viewer, and the resource-facing I/O
contacts a collaboration application. Hence, the role
of the Web Service is to transcode in both directions
between the two sets of ports with respect to displays
and events, so that the user accesses the Web Service
viewer as if the collaboration application itself.

We use three collaborative applications as
resources, and projects in SVG as the demonstration
of our initial effort in the implementation of a General
Thin Client Collaboration Web Service.

1. Introduction

There has been a lot of software developed for
collaboration over the Internet. Application areas
include online conferencing, distance education, e-
Science, e-Business, etc. Applications already in
industry, such as WebEx [1], Tango and Anabas [2],
have proved to be useful, efficient, and beneficial. It
means, among other things, distance and location is no
longer a barrier or restriction, and time, resources and
money are saved.

The Web Service Architecture is designed to
promote software’s usefulness, interoperability,
availability, extensibility, etc. If the collaboration
software is made to be Web Service (WS), totally or

partially, it will be more powerful and benefit
everyone – different research groups, institutions,
organizations, and even ordinary users.

In this paper, we describe some possible ways of
making such software to be Web Service, propose and
focus on discussing the idea of Thin Client
Collaboration Web Services, and explore some
potential scenarios of this idea in which it shows its
merit on leveraging the merit of the Web Service
Architecture, and on more freedom in collaboration
resulted from it.

The idea of Thin Client Collaboration Web
Services is that, instead of packaging the whole
package of a collaboration software application as
Web Service, it separates the native interface from the
rest of the software, correlates the native interface (in
whatever format and language) to a web service
friendly user interface (such as in SVG format and
Java language), including its screen display and events
originated from the triggering of the widgets inside the
display, and let the user access the result user interface
as if it were the native interface, relying on the fact
that the Web Service has made them one-to-one
correspondence functionally, both on the
corresponding parts of the displays, and on the
corresponding events of the widgets.

Extensible Markup Language (XML) [3] is an
indispensable description language for Web Service,
and Scalable Vector Graphics (SVG) [4] is a subset of
XML. SVG has advantages in representing screen
displays because it is vector oriented. Other than all
kinds of SVG viewers, Web browsers like Internet
Explorer can render SVG files directly inside their
windows. It seems that SVG format is the right one we
should choose, and Java is the right language for the
purpose, because it has been designed and developed
with the Web in mind. So hereafter, when we refer to

WS user interface, we mean that it is in SVG format
and Java language, though others could be potential
alternatives.

The Web Service in question has two sets of ports:
User-facing Input/Output ports and Resource-facing
Input/Output ports [5, 6]. The user interface discussed
above corresponds to user-facing I/O, and the native
interface corresponds to resource-facing I/O. Hence,
the role of the Web Service is to transcode in both
directions between the two sets of ports with respect to
displays and events, so that the user accesses the user-
facing I/O as if he/she were accessing the resource –
the collaboration software application – itself.

We use our three collaborative projects –
collaborative PowerPoint [7], collaborative
OpenOffice [8] and collaborative IDL ReviewPlus [9]
– as examples of resources. Each of these projects
consists of a Master client and a Participant client. In
execution, there can be multiple instantiations of the
Participant clients. In a collaboration session, the
Master captures events and sends out event messages
through a message broker to the Participants for
rendering the same result displays. We use our
projects in SVG as the demonstration of our initial
effort in the implementation of the idea of Thin Client
Collaboration Web Services. We describe briefly the
design and implementing issues of the SVG projects in
this paper, give some results, and point out the future
work.

2. Problems

While it is possible to package the whole package
of the collaboration software application as Web
Service, the advantage of doing so really depends on
situations and there are problems with some situations,
as we discuss below.

If the package is small in size and its deployment
structure is not complicated, it is good to do so.

If the package is big in size, it would be difficult
to do so. Take our collaborative OpenOffice project as
an example. Our developed code for collaboration is
not big, but it is based on the whole underlying
OpenOffice source code, making use of its
fundamental functions to achieve the collaboration.
Even though it is open source, the source code of
OpenOffice consists of millions of lines of code and it
has been developed by groups of talented people years
of hard work. Theoretically, if we were to package this
project as Web Service, we have to package the
underlying basis, too; or at least part of it, if we were
lucky enough to know which necessary parts to
include and those parts are absolutely not calling or
referencing the code of the rest all the time. How hard
would that be, if it is not impossible?

If the package is related to proprietary software, it
would be more difficult. Take our collaborative
PowerPoint project as an example. Our developed
code for collaboration is not big, but it is based on the
functionality of the underlying Microsoft PowerPoint
application, making use of its functionality to achieve
the collaboration. It is proprietary and it is big, too.
Again, theoretically, if we were to package this project
as Web Service, we have to package the functionality
of this proprietary product as well. What is the
possibility of success in this matter?

If the package itself is complicated in architecture
and deployment, possibly involving fire walls, it
would be at least difficult. Take our collaborative
ReviewPlus project as an example. ReviewPlus [10]
itself is big, and it calls functions from another
independent big package called MdsPlus [11], and
also others. More complicated yet, ReviewPlus
contacts with other servers, such as the event server,
and exchange information with them. It is highly
possible that they are behind different fire walls, as the
suggestion of ReviewPlus itself, because it is deployed
behind at least one level of fire walls. Once again,
theoretically, if we were to package this project as
Web Service, we have to deal with all the complexity
as well. How much effort would that cost and how
many people and groups would be involved, given that
everybody is willing to cooperate?

What is more, if the package was developed in a
popular language like Java, C++, or C#, where
accompanying tools for Web Service have been
developed, it is easier for the job; but what if the
package was developed in a language that has not had
such additional tools yet, like IDL?

On all accounts, it is desirable to find another way
for Web Service that avoids the difficulty and
complexity, harnesses the resource, and accesses the
user interface. This leads to our next description of the
idea of Thin Client Collaboration Web Services.

3. Thin Client Collaboration Web Services

As we can see, collaboration software
applications are developed on different platforms,
using different models, paradigms, architectures, and
methodologies, and in different programming
languages. One common feature is that they usually
have rich user interfaces where users can access
input/output information and achieve collaboration
between peers. We refer to these interfaces as native
interfaces, and the applications as resources in this
text.

These resources are usually developed in multi-
tiers architecture, say three-tiers: back end tier, middle
tier, and front end tier, with databases on the back end
and native interfaces on the front.

The idea of Thin Client Collaboration Web
Services is that, instead of packaging the whole
package of a collaboration software application as
Web Service, it separates the native interface from the
rest of the software; correlates the native interface (in
whatever format and language) to a web service
natural and friendly user interface (such as in SVG
format and Java language), including its screen display
and events originated from the triggering of the
widgets inside the display; and lets the user access the
result user interface as if it were the native interface,
relying on the fact that the Web Service has made
them one-to-one correspondence functionally, both on
the corresponding parts of the displays, and on the
corresponding events of the widgets.

The structure of the Web Service has two sets of
ports: User-facing Input/Output ports and Resource-
facing Input/Output ports [5, 6], as shown in Figure 1.

Figure 1. The structure of a web service with
user-facing input/output ports and resource-

facing input/output ports

The WS user interface discussed above

corresponds to user-facing I/O, and the native
interface corresponds to resource-facing I/O. Hence,
the role of the Web Service in question is to transcode
in both directions between the two sets of ports with
respect to displays and events, so that the user
accesses the user-facing I/O as if he/she were
accessing the resource – the collaboration software
application – itself.

Thus, the Web Service doesn’t have to deal with
all the difficulty and complexity of the resource; it just
has to contact with the native interface of the resource
and do some transcoding between the two sets of I/O
ports, and lets the rest be the encapsulation of the
resource.

On one direction, the Web Service takes the
output display of the resource to the input port (I) of
the resource-facing I/O, translates the information in
the native interface to the equivalence in SVG format,
and directs the result to the output port (O) of the user-
facing I/O, where the SVG viewers, Web browsers can
render the SVG file directly inside their windows for
the user to view.

On the other direction, the Web Service takes the
event message from the SVG viewer/Web browser,
which is resulted from the triggering of the widget
event by the interaction of the user, to the input port (I)
of the user-facing I/O, translates the event message to
the equivalence of the event/event structure of the
native interface of the resource, and directs the result
to the output port (O) of resource-facing I/O, where
the resource gets the event message and automates the
execution under the instructions in the message.

We use our three collaborative projects –
collaborative PowerPoint, collaborative OpenOffice
and collaborative IDL ReviewPlus – as examples of
resources. We also have done projects in SVG: a
converter which converts HyperText Markup
Language (HTML) file to SVG file, and a converter
which converts files in Windows Metafile Format
(WMF) [12] to SVG format. Here is a clue of
implication: OpenOffice can save its presentation file
(*.sxi) as PowerPoint file (*.ppt), and PowerPoint can
save its presentation file (*.ppt) as HTML file, WMF
file, and so on. The indication is that, our trial in the
SVG projects is the initial effort of the implementation
of the idea of Thin Client Collaboration Web Services.

4. Thin Client Web Services in
Collaboration

In this section, we give some collaboration
scenarios in which the thin client web services play
their roles and show their potentials. We use our three
collaborative projects as resources. Each has a master
client that generates event message, and at least one
participant client that consumes the event message.
The master and participant(s) communicate with and
cooperate on the event message. The thin client web
services contact only with the native interfaces of the
clients and access/control them in collaboration. The
scenarios bring interoperability, flexibility and
diversity to collaboration and can be potential
solutions for many technical problems regarding to
synchronous/asynchronous issues in collaboration.

4.1. Scenario 1

All the resources of our collaborative applications
are developed in this manner: The Master client
controls the process of a session of collaboration,
captures events and sends event messages to all
Participant clients through NaradaBrokering (NB)
event broker [13, 14]; the Participants do not interfere
with the process, they just receive the event messages
and render the same output displays as the Master
under the instructions in the messages. This way, the
states of all the clients keep the same at every event so
that collaboration is achieved.

This scenario follows the manner of the resources:
only one instance of the Web Service is hooked up
with the Master client of the resource, and the
controller or lecturer is controlling the process through
a WS viewer; at least one instance of the Web Service
is hooked up with each Participant client, and the
audiences or students are viewing the displays via the
WS viewers. This is depicted in Figure 2.

Figure 2. Instances of a web service in

collaboration, with only one instance for the
master client and at least one instance for

each of the participant clients

In the Figure, two participant clients are shown. In

reality, it can be any number: one, two, or many, as
many as the NB event broker can support;
theoretically, the number is unlimited. Also in the
Figure, even though only one instance of the web
service is shown with each participant client, it could
be multiple instances for each. What is more, the
clients of the resource and the web service need not be
deployed on the same location.

The WS Viewers in the picture can be any SVG
rendering tools: SVG viewers, Web browsers,
Personal Digital Assistants (PDA), or other mobile
devices [15, 16], because of one factor – the output of
the web service to the viewers is in SVG format. This
makes universal access to resources possible, and so
for universal collaborations.

Since the Participant client is designed to be
passive and is not allowed any input to it other than
the event message from the Master, the input of event
from the audiences or students along the direction
through the Web Service has no effect on the
Participant client, as indicated by the dotted arrows in
the Figure.

We can originally design such a Web Service for
a sole resource – collaborative PowerPoint,
collaborative OpenOffice, collaborative IDL
ReviewPlus, or any other collaboration application.
Later on we can aggregate/relate these element Web
Services to a general Web Service, which will dispatch
function calls to the elements on conditions, so that the
general Web Service can be used for all these
resources.

4.2. Scenario 2

If we hook up two or more instances of the Web
Service to the Master client in Figure 2, the
collaboration pattern changes to a more dynamic and
democratic environment for presentation, as shown in
Figure 3.

Figure 3. Instances of a web service in

collaboration, with two or more instances for
the master client and at least one instance for

the participant client

This scenario allows two or more

speakers/lecturers to jointly present a
presentation/lecture to the audiences/students, with
everybody possibly on different locations. This
scenario is also suitable for a study group discussing
some content on the web, with the rest as silent
observers.

It works like this: the same native interface of the
output display of the Master client feeds to every input
port of the resource-facing I/O of the instance of the
Web Service hooked up with the Master client; each
instance then does the transcoding job and supplies the
result SVG file to its associated WS viewer through
the output port of the user-facing I/O of the instance;

each WS viewer then renders the same output display
as that of the Master client.

Each instance of the Web Service with the Master
client takes the event message from the WS viewer,
which is resulted from the triggering of the widget
event by the interaction of the user, to the input port (I)
of the user-facing I/O, translates the event message to
the equivalence of the event/event structure of the
native interface of the resource, and directs the result
to the output port (O) of the resource-facing I/O,
where the Master client gets the event message and
automates the execution under the instructions in the
message.

Thus, whenever the display of the Master client
changes, it reflects to each of the instances; every
instance sends some event messages to the Master
during a session, and the union of all the event
messages reflects the sequence and action of the joint
presentation. To the Master client, it is just like one
person is controlling the process of the session.

At each step of the collaboration, the Master and
Participant clients share the same state due to the
communication of the event message. All the instances
of the Web service hooked up with the Master client
share the same state too, in the form of presenting the
same resulting SVG file to the viewers.

4.3. Scenario 3

If we hook up multiple instances of the Web
Service to the Master client only in Figure 3, it is
reduced to Figure 4.

This scenario is a special case of scenario 2. It is
adequate for a study/research group discussing some
content of their own interest on the web, with
everyone possibly on different locations.

The working mechanism is the same as scenario 2.
Here, it just makes use of the Master client of the
resource and lets the instances of the Web Service
share the output displays of the client and control it
jointly through events.

Figure 4. Instances of a web service in

collaboration, with multiple instances hooked
up with the master client only

4.4. Scenario 4

Diverse visual aids in presentation can convey
more information, make it more effective, give deep
impression and enlighten the soul. Therefore, it is a
good use to bring diverse resources and Web Services
together in a presentation, as shown in Figure 5.

Figure 5. Instances of diverse web services in
collaboration, with each instance type hooked

up with its corresponding resource type

In this picture, the pair (Mi, Pi) represents a

resource type, with Mi be the Master client of the type,
and Pi be the Participant client; instances of Web
Service i hook up with this type of clients.

Let us conjure up an example to illustrate.
Suppose in a presentation we use the resource of
collaborative PowerPoint applications (M1, P1) to do
the main course of the presentation, use the resource
of collaborative OpenOffice (M2, P2) to give additional
information corresponding to each slide in the
previous, such as references, episodes, exhaustive
details, etc., and use the resource of collaborative IDL
ReviewPlus (M3, P3) to supply scientific and
engineering graphs, charts and images necessary to
each slide, in 2D or 3D. This sounds more interesting
and attractive.

During a presentation, the speaker controls at will
three WS viewers corresponding to three instances of
Web Service 1, 2, and 3 which are hooked up with the
resource type 1, 2, and 3, respectively. Accordingly,
the audiences use three WS viewers to read the output
displays of each. In a simple case, it could be three
instantiations of a Web browser on the screen of a
monitor, for everyone.

As always, at each collaboration step, the states of
(Mi, Pi) would be the same on the current event
message. Any two types of resources – (Mi, Pi) and (Mj,
Pj) – would not interfere with each other, if we put
extra identifying information at the head of each event
message, e.g. “ppt”, “office” or “idl”, because after
checking this identifying information, if it is not
supposed for a Participant client type, it would just
ignore it. Thus, the states of one resource type are
independent of the other.

We can originally design each Web Service for a
sole resource – collaborative PowerPoint,
collaborative OpenOffice, collaborative IDL
ReviewPlus, or any other collaboration application.
Later on we can aggregate/relate these element Web
Services to a general Collaboration Web Service,
which will dispatch function calls to the elements on
conditions, so that the general Collaboration Web
Service can be used for all these resources, and all the
WS viewers, too. This makes things clearer and saves
efforts in finding and binding Web Services.

4.5. Potential Problems and Solutions

By now we have focused on describing the main
features of the scenarios. We can foresee some
potential problems in them, and we have accordingly
planed the solutions for them, as follows:

Problem 1: On the native interface (display) of

the Master client of a resource, after one event is
triggered (e.g. a click on a button), and before the
output comes out and the display is updated, the cursor
on the display window is usually changed to a waiting
sandbox to prevent any further input; or in some other
cases, even if the sandbox cursor is not shown, any
further input is just ignored.

What if additional events are issued on the WS
viewer in between?

For instance, if two consecutive button clicks –
one on button 1 and one on button 2 which becomes
the additional event – happened on the current display
on the WS viewer, when these two events get
transcoded through the Web Service and get to the
native interface, this could cause trouble: because
there is a time interval between the two events, after
the first one is executed by the Master and its native
display is updated, the updated display may be a
totally different one that contains no button at all, then

the event of button 2 makes no sense at all to the new
display.

Solution: Consider the behavior of the native

display of the resource, we can add a similar
mechanism to the Web Service that changes the cursor
on the WS viewer to a waiting sandbox after an input
is put on the input port of the user-facing I/O, and
keeps that status until the corresponding output is
coming back from the resource and put on the output
port of the user-facing I/O. This prevents additional
events from happening before the current one is
complete from the view of the overall system, by
making those attempts impossible.

Problem 2: In scenario 2 and 3, where multiple

speakers jointly present a presentation or discuss
subjects within a group, if two or more speakers issue
events simultaneously or very closely, that will cause
trouble as in Problem 1, since to the Master client, the
result is just like one speaker is controlling. Worse yet,
it could cause unpleasant results between the speakers;
just imagine that, before a speaker finishes his/her part,
another issues an event intentionally or accidentally
and changes the display; the rest, though innocent,
also become potential “suspects” to the first one. It is
at least interrupting.

Solution: As in some audio/video conferencing

systems, we can add a resource competition
mechanism to the Web Service; this resource is in the
form of an icon of a microphone. When a speaker is in
possess of the icon, the rest are disabled, that is, the
events they issued are ignored, only the events from
the current speaker can get through the Web Service
and reach the Master client. After the speaker finishes
his/her part, he/she releases the icon, and all the
speakers get a chance to compete to get the icon and
speak next. Of course, for the current speaker, problem
1 and its solution apply.

Problem 3: The NB event broker is supposed to

be a common message broker deployed on Grid for
public use. It may be the case that multiple
conferencing sessions are going on using NB as the
underlying communication media, with overlaps in
time with one another.

How to avoid event messages from different
sessions interfering with each other?

Solution: First, conference sessions should be

advertised on a session management service, such as
GlobalMMCS [17], as to schedules, titles, and unique
session numbers. Secondly, we can arrange the Web
Service to get the session number for a session and let
it inform the native clients of a resource so that they
agree on that session number in recognizing the

supposed event messages. Any alien session number
in the message will cause the message to be ignored.
This session number should be added to the head of
each event message. This way, each conferencing
session is sifting their own messages and working on
them clearly in the open Grid environment.

Problem 4: In scenario 4, how to avoid event

messages from any two different types of resources –
(Mi, Pi) and (Mj, Pj) – interfering with each other?

Solution: As always, at each collaboration step,

the states of (Mi, Pi) would be the same on the current
event message. Any two types of resources – (Mi, Pi)
and (Mj, Pj) – would not interfere with each other’s
execution due to the mixed event messages from NB,
if we make the Master client Mi put extra identifying
information for its type at the beginning of each event
message (after the session number), e.g. “ppt”,
“office” or “idl”: because after checking this
identifying information, if it is not supposed for the
corresponding Participant client type Pi, it would just
be ignored by Pi. Thus, the states of one resource type
are independent of the other.

5. Deployment and Usage of Collaboration
Web Services

Web Services along with Peer-to-Peer Grids play
important roles in collaboration. Web Services enable
developers and users to integrate functionality across
businesses and organizations.

Suppose that we have developed our general
Collaboration Web Service.

The information of this Web Service, such as its
Universal Resource Identifier (URI) endpoint, its
exposed methods, etc., is described in the Web Service
Description Language (WSDL) file, and the Web
Service is deployed and published to a Service Broker
with this file. The users or applications can find this
Web Service using Universal Discovery, Deployment
and Integration (UDDI), and then bind to it and use it
via the internet [18], as in Figure 6.

Figure 6. Web service published to service

broker and used later in application

On one end, a client of a resource (collaborative

applications) finds and binds to the general
Collaboration Web Service and cooperates with it
through its resource-facing I/O; on the other end, a
WS viewer performs the same procedure to bind to the
general Collaboration Web Service and cooperates
with it through its user-facing I/O.

More specifically, as described in the scenarios
before, the speaker’s WS viewer is bound to the
instance of the general Collaboration Web Service that
has the Master client of a resource bound to it, and
each audience’s WS viewer is bound to the instance of
the general Collaboration Web Service that has the
Participant client of the corresponding resource bound
to it. As always, the Master client and the Participant
client(s) of each resource type collaborate on event
messages via the underlying communication of the NB
event broker.

Thus, collaboration is achieved through the
general Collaboration Web Service.

6. Initial Effort in the Implementation of a
General Collaboration Web Service

In this section we first describe our initial effort in
the implementation of a general Collaboration Web
Service: a converter which converts HTML file to
SVG file, and a converter which converts files in
WMF format to SVG format. This effort is in the
direction we have described earlier from the resource
to the viewer, or from the resource-facing I/O to the
user-facing I/O; it is motivated by the clue of
implication: OpenOffice can save its presentation file
(*.sxi) as PowerPoint file (*.ppt), and PowerPoint can
save its presentation file (*.ppt) as HTML file, WMF
file, and so on. The indication is that, our trial in the
SVG projects is the initial effort in the implementation
of a General Collaboration Web Service.

Secondly, we describe part of our future work: the
transcoding of events from the viewer to the resource,
or from the user-facing I/O to the resource-facing I/O.

6.1. Converting HTML File to SVG File

We have done a project in SVG: a converter
which converts HTML file to SVG file.

Basically, the converter consists of two functional
units: an HTML parser and an SVG converter. The
HTML parser takes an HTML file as input, parses it to
get and categorize the HTML tags and their associated
properties. The SVG converter works on the HTML
tags and properties and converts the information to the

equivalent SVG representation. In most cases, it
converts the information contained in a pair of HTML
tags to the resulting SVG equivalence which is
contained in a pair of SVG tags.

We are not attempting to give much detail about
the programming and implementing of the project, but
give some results which are enough to indicate the
effort.

In Figure 7, we give the display of the rendering
of an HTML file in Internet Explorer web browser, at
the same time we give the source of the HTML file in
the background of the figure.

In Figure 8, we give the display of the rendering
of the converted SVG file from the HTML file in
Internet Explorer web browser, at the same time we
give the source of the SVG file in the background of
the figure.

6.2. Converting WMF File to SVG File

We have done another project in SVG: a
converter which converts WMF file to SVG file.

As the former one, the converter also consists of
two functional units: a WMF parser and an SVG
converter. The WMF parser takes a WMF file as input,
parses it to get and categorize the codes for its element
types (e.g. a line) and their associated properties. The
SVG converter works on the codes for types and
properties and converts the information to the
equivalent SVG representation, with each piece of
information contained in a pair of SVG tags.

Figure 7. Rendering of an HTML file with the
source of the HTML file showing in the

background

Figure 8. Rendering of the converted SVG file
from the HTML file, with the source of the

SVG file showing in the background

The difference here is, WMF file is represented in

hexadecimal codes for both its element types and
properties. Each element in the file is defined by a
type code followed by codes for its properties, such as
number of bytes, coordinates, colors, etc. The
meanings of all the codes are defined in WMF file
format description [19]. Only with that explanation for
each byte of the codes can each code be meaningful to
devoted people. Otherwise, those arcane codes are just
gibberish; only part of the range of the codes falls into
the printable ASCII representation, and event that part
when printed is just random gibberish, as we show in
the background of some of the following figures.

We are not attempting to give much detail about
the programming and implementing of the project, but
give some results which are enough to indicate the
effort.

In Figure 9 and 11, we give the displays of the
rendering of two WMF files in Windows Picture and
Fax Viewer; at the same time we give the sources of
the WMF files in the backgrounds of the figures,
which are only the parts for the printable characters
and signs of those arcane codes.

In Figure 10 and 12, we give the displays of the
rendering of the converted SVG files from the WMF
files in Internet Explorer web browser, at the same
time we give the sources of the SVG files in the
backgrounds of the figures.

Figure 9. Rendering of a WMF file with the

printable source of the WMF file showing in
the background

[Note: The picture of the little lion was free
downloaded in WMF format from a web site,

its author unknown]

Figure 10. Rendering of the converted SVG
file from the WMF file, with the source of the

SVG file showing in the background

Figure 11. Rendering of a WMF file with the
printable source of the WMF file showing in

the background

Figure 12. Rendering of the converted SVG
file from the WMF file, with the source of the

SVG file showing in the background

6.3. Future Work

Substantial work needs to be done in the
implementation of a General Collaboration Web
Service we have described, such as converting other
kinds of file format to SVG format, automating the
Web Service with all kinds of resources as well as
with all kinds of WS viewers, and so forth.

One part of our future work resides in the
transcoding of event from the viewer to the resource,
or from the user-facing I/O to the resource-facing I/O.

Similar experiment has been tried in the Universal
CAROUSEL Access project of the Community Grid
Lab at Indiana University [20], in which SVG events
from a PDA are transcoded to the equivalents of a
SVG Viewer on a desktop and control its process
wirelessly [15, 16].

We can surely get a clue from this.

7. Conclusion

In this paper we introduced some resources of
collaboration applications, and the needs in making
them to be Web Services. We proposed and described
the idea of Thin Client Collaboration Web Services,
and explored some potential scenarios of this idea in
which it shows its merit and the freedom resulted in
collaboration.

Such a Web Service has two sets of ports: User-
facing Input/Output ports and Resource-facing
Input/Output ports. The user-facing I/O contacts a WS
viewer, and the resource-facing I/O contacts a
collaborative application. Hence, the role of the Web
Service is to transcode in both directions between the
two sets of ports with respect to displays and events,
so that the user accesses the WS viewer as if the
resource itself.

We used our three collaborative projects as
examples of resources, and projects in SVG as the
demonstration of our initial effort in the
implementation of a General Thin Client
Collaboration Web Service. We described briefly the
SVG projects, gave some results enough to indicate
the effort, and pointed out the future work.

References

[1] WebEx Collaboration Environment
http://www.webex.com
[2] Anabas Collaboration Environment
http://www.anabas.com
[3] Extensible Markup Language (XML) 1.0 (Third Edition)
http://www.w3.org/TR/REC-xml/
[4] Scalable Vector Graphics (SVG) 1.0 Specification
http://www.w3.org/TR/2001/PR-SVG-20010719/
[5] Geoffrey Fox, Hasan Bulut, Kangseok Kim, Sung-Hoon
Ko, Sangmi Lee, Sangyoon Oh, Shrideep Pallickara,
Xiaohong Qiu, Ahmet Uyar, Minjun Wang, and Wenjun Wu,
“Collaborative Web Services and Peer-to-Peer Grids”,
Proceedings of 2003 Collaborative Technologies Symposium.
http://grids.ucs.indiana.edu/ptliupages/publications/foxwmc0
3keynote.pdf
[6] Fran Berman, Geoffrey Fox, and Tony Hey, Grid
Computing: Making the Global Infrastructure a Reality,
John Wiley & Sons Ltd, Chichester, West Sussex PO19 8SQ,
England, 2003.
[7] Minjun Wang, Geoffrey Fox, and Shrideep Pallickara,
“Demonstrations of Collaborative Web Services and Peer-
to-Peer Grids”, Journal of Digital Information Management,
June 2004, Volume 2, Issue 2, pp. 93-96.
http://grids.ucs.indiana.edu/ptliupages/publications/P2PGrid
s_JDIM_PDF.pdf
[8] Minjun Wang and Geoffrey Fox, “Design of a
Collaborative System” for Open Office, Proceedings of
IASTED KSCE 2004 Conference, US Virgin Islands,
November 2004.

http://grids.ucs.indiana.edu/ptliupages/publications/OpenOff
iceCollaborativeSystemFINAL.pdf
[9] Minjun Wang, Geoffrey Fox, and Marlon Pierce, “Grid-
based Collaboration in Interactive Data Language
Applications”, Proceedings of IEEE International
Conference on Information Technology, Las Vegas, Nevada,
April 4-6, 2005.
http://grids.ucs.indiana.edu/ptliupages/publications/GridColl
abIDL_ITCC2005.pdf
[10] ReviewPlus Data Visualization Software User Manual
http://web.gat.com/comp/analysis/uwpc/reviewplus/manual/
[11] MDSplus: Introduction
http://www.mdsplus.org/intro/index.shtml
[12] Microsoft Windows Metafile
http://wvware.sourceforge.net/caolan/ora-wmf.html
[13] Geoffrey Fox, Shrideep Pallickara, and Xi Rao, “A
Scalable Event Infrastructure for Peer to Peer Grids”,
Proceedings of 2002 Java Grande/ISCOPE Conference,
Seattle, November 2002, ACM Press, ISBN 1-58113-599-8,
pp. 66-75.
http://grids.ucs.indiana.edu/ptliupages/publications/Scaleabl
eEventArchForP2P.doc
[14] Shrideep Pallickara and Geoffrey Fox, “Efficient
Matching of Events in Distributed Middleware Systems”,
Journal of Digital Information Management, June 2004,
Volume 2, Issue 2, pp. 79-87.
http://grids.ucs.indiana.edu/ptliupages/publications/jdim-
vol2-num2.pdf
[15] Sangmi Lee, Geoffrey Fox, Sunghoon Ko, Minjun
Wang, and Xiaohong Qiu, “Ubiquitous Access for
Collaborative Information System Using SVG”,
Proceedings of SVGopen conference, Zurich, Switzerland,
July 2002.
http://grids.ucs.indiana.edu/ptliupages/projects/carousel/page
rs/draft.pdf
[16] Sangmi Lee, “A Modular Data Pipelining Architecture
(MDPA) for Enabling Universal Accessibility in P2P Grids”,
Florida State University, Ph.D. Dissertation, July 3 2003.
http://grids.ucs.indiana.edu/ptliupages/publications/Sangmi_
Lee_thesis.pdf
[17] Global Multimedia Collaboration System
http://www.globalmmcs.org/
[18] H. M. Deitel, P. J. Deitel, J. P. Gadzik, K. Lomeli, S. E.
Santry, and S. Zhang, Java Web Services for Experienced
Programmers, Prentice Hall, New Jersey, 2003.
[19] Microsoft Corp., Microsoft Windows Programmer’s
Reference, Microsoft Press, Redmond, 1990.
[20] Community Grid PDA project
http://grids.ucs.indiana.edu/ptliupages/projects/carousel/

