Contents

CHAPTER 1 = Scalable Query and Analysis for Social Networks 1

Tak-LoN (STEPHEN) WU, BINGJING ZHANG, CLayTON DAvis, EMILIO
FERRARA, ALESSANDRO FLAMMINI, FiLiPpo MENCzER , and Juby Qiu

1.1 INTRODUCTION 3
1.2 APACHE HIGH-LEVEL LANGUAGE, SYNTAX AND ITS

COMMON FEATURES 4
1.2.1 Pig 4
1.2.2 Hive 8
1.2.3 Spark SQL/Shark 9
1.3 PIG, HIVE AND SPARK SQL COMPARISON 10
1.4 AD-HOC QUERIES: TRUTHY AND TWITTER DATA 11
1.5 ITERATIVE SCIENTIFIC APPLICATIONS 13
1.5.1 K-means Clustering and PageRank 14
1.6 BENCHMARKS 17
1.6.1 Performance of Ad-hoc Queries 18
1.6.2 Performance of Data Analysis 19

1.7 CONCLUSION 21

vii

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17

Pig’s Architecture
Pig High-Level Dataflow
WordCount written in Pig
WordCount written in Hive
Iterative applications with Pig
Iterative applications with Pig+Harp
Hive Architecture
Spark SQL Architecture
Pig K-means script
Hive K-means script
Pig+Harp K-means script
Pig PageRank script
Hive PageRank script
Pig+Harp PageRank script
Truthy’s get-tweets-with-X queries on Twitter data
K-means Result
PageRank Result

© N o ot

10
14
14
15
16
16
16
18
20
20

List of Tables

1.1

1.2
1.3
1.4

1.5

1.6

1.7

1.8

TRUTHY’S AD-HOC QUERIES FOR SIMPLE TWEETS
RETRIEVAL

HARDWARE SPECIFICATION OF MOE
RUNTIME SOFTWARE SPECIFICATION OF MOE
SIZE. OF RECORDS OBTAINED BY “get-tweets-
with-X”

SCRIPT AND EXECUTION COMPARISON OF “get-
tweets-with-X”

SCRIPT AND EXECUTION COMPARISON OF K-
MEANS

SCRIPT AND EXECUTION COMPARISON OF
PAGERANK

CROSS COMPARISON FOR PIG, HIVE AND
SPARK SQL

13
17
18

19

19

19

20

22

CHAPTER 1

Scalable Query and
Analysis for Social
Networks: An Integrated
High-Level Dataflow
System with Pig and
Harp

Tak-Lon (Stephen) Wu
Indiana University
Bingjing Zhang

Indiana University

Clayton Davis

Indiana University
Emilio Ferrara
Indiana University
Alessandro Flammini

Indiana University

Filippo Menczer

Indiana University

Judy Qiu
Indiana University

2 MW Book chapter

CONTENTS
1.1 Introductiono 3
1.2 Apache High-Level Language, Syntax and its Common
Features 4
0 T 4
1.2.2 0 HIVE oo 8
1.2.3 Spark SQL/Sharkcoiiii. 9
1.3 Pig, Hive and Spark SQL Comparison 10
1.4 Ad-hoc Queries: Truthy and Twitter Data 11
1.5 Tterative Scientific Applications 13
1.5.1 K-means Clustering and PageRank 13
1.6 Benchmarks 16
1.6.1 Performance of Ad-hoc Queries 18
1.6.2 Performance of Data Analysis 19
1.7 Conclusioncoiiiiii 21

VERY DAY, VAST AMOUNTS OF DATA ARE BEING COLLECTED
EFROM SOCIAL NETWORK (E.G., TWITTER) APPLICATIONS, AND
IN RESPONSE THERE IS A GROWING NEED FOR ANALYSIS METHODS
THAT CAN HANDLE THIS TERABYTE-SIZE INPUT. T'O PROVIDE AN
EFFECTIVE AND ADVANCED DATA PROCESSING ENVIRONMENT FOR
VARIOUS TYPES OF SOCIAL DATA ANALYSIS SUCH AS POLITICAL DIS-
COURSES, TRENDING TOPICS, EVOLUTION OF USER BEHAVIOR, SO-
CIAL BOTS DETECTION AND ORCHESTRATED CAMPAIGNS, WE NEED
TO SUPPORT BOTH QUERY AND COMPLEX ANALYSIS EFFICIENTLY.
USE OF HIGH-LEVEL SCRIPTING LANGUAGES TO SOLVE BIG DATA
PROBLEMS HAS BECOME A MAINSTREAM APPROACH FOR SOPHISTI-
CATED DATA MINING AND ANALYSIS. IN PARTICULAR, HIGH-LEVEL
INTERFACES SUCH AS PIG, HIVE, AND SPARK SQL ARE BEING USED
ON TOP OF THE HADOOP FRAMEWORK. THIS SIMPLIFIES CODING OF
COMPLEX TASKS IN MAPREDUCE-STYLE SYSTEMS WHILE IMPROVING
THE FLEXIBILITY OF DATABASE SYSTEMS THROUGH USER-DEFINED
AGGREGATIONS. IN THIS CHAPTER WE WILL COMPARE DIFFERENT
APPROACHES OF BUILDING HIGH-LEVEL DATAFLOW SYSTEMS AND
PROPOSE AN INTEGRATED SOLUTION WITH P1G AND HARP (A PLU-
GIN TO HADOOP) ALONG WITH GIVING EXTENSIVE BENCHMARKS.
THE RESULTS SHOW THAT PIG AND HARP INTEGRATION FOR SO-
PHISTICATED ITERATIVE APPLICATIONS RUNS AT A FACTOR OF 2 TO

Scalable Query and Analysis for Social Networks B 3

10 TIMES FASTER THAN PIG OR HIVE IMPLEMENTATION EXECUTED
ON HADOOP.

1.1 INTRODUCTION

Social media represents a precious data source providing tremendous
amounts of streaming information for analytics and research appli-
cations. Many research projects are involved in performing intensive
analysis on such data, and the outcome of this analysis is drawing
the attention of various applications, including market sales analysts,
societal studies (including political polarization [10], congressional elec-
tions [14, 13], protest events [12, 11], and the spread of misinformation
[38, 37]) and information diffusion [24]. Compared to other problems
in computing, social media analysis is “special”; it normally focuses on
a subset of data related to a target social event within a specific time
frame. To further investigate the inter-relationship of such subsets of
data, various sophisticated algorithms and complex data transforma-
tions may be applied into a series of stages [19]. Therefore, developing
a programmable solution for social media data must include features
like expressiveness, ability for data extraction, reusability and interop-
erability with different computation runtimes. Apache high-level lan-
guages and Apache Hadoop [1] ecosystem are some of the existing
building block solutions that match the requirements for social net-
work analysis.

The use of high-level language platforms is not just limited to social
media data. Other fields of research such as workflow provenance [7],
network traffic analysis [26, 23], and geographic data analysis [6] have
proved the adaptation of these solutions boosts and scales up their
historical data analysis. However, the complex workflows characterizing
existing platforms makes it difficult for users to decide what language
and low level runtimes best match their needs. Motivated by these
challenges, our goal is to provide a comprehensive survey of these high-
level abstractions involving experiments with real social media data
examples and common query and analysis applications.

The rest of the paper is organized as follows. Section 1.2 gives an
overview of Apache high-level languages, especially Pig [22], Hive [40]
and Spark SQL [2, 44]. The first two build on Hadoop while Harp
[47] and Spark [46] are Apache iterative MapReduce frameworks of-
fering support to complex parallel data systems. Section 1.3 provides
a comparison of these languages’ features especially the important

4 B Book chapter

user-defined functions that make MapReduce a simplified and scalable
solution. Sections 1.4 and 1.5 introduce applications that are used for
benchmarking later in the chapter.; Section 1.4 introduces the Truthy
project and the types of queries that it needs to run on top of Twitter
data, while Section 1.5 discusses three data analytics use-cases and how
to express them in high-level languages. Section 1.6 presents the perfor-
mance evaluation of the applications presented in Sections 1.4 and 1.5,
and the technologies of Section 1.2. Section 1.7 draws our conclusions.

1.2 APACHE HIGH-LEVEL LANGUAGE, SYNTAX AND ITS COM-
MON FEATURES

Programming languages have been developed for more than 50 years.
Each language has its own compiler/interpreter and executes a physi-
cal plan on top of the low level (operating) system. Apache high-level
languages share the common features of traditional programming lan-
guages; in many cases, a compiler built for such a language supports
several fundamental functions and operations: a syntax parser, type
and compile time semantic checking, logical plan generator and opti-
mizer, and physical plan generator and executor. Here ANTLR (AN-
other Tool for Language Recognition) [34] is the general syntax parser
for Pig, Hive, and Spark SQL. Each language has its own types and
plan generator and optimizer, but all of them use YARN [42] as their
resource management tool. The next sections will discuss details of
Apache Pig, Apache Hive and Apache Spark SQL.

12.1 Pig

Pig is a high-level dataflow system that yields simple data transforma-
tions in pipeline for large amounts of semi-structured data stored in
Hadoop compatible file storage. Applications such as massive system
log analysis and traditional Extract, Transform, and Load (ETL) data
processing are performed regularly. Pig was first introduced by Ya-
hoo!, and became one of the most popular Hadoop ecosystem projects
in the Apache open source community. It uses its built-in procedural
language, Pig Latin [32], designed for large-scale data analysis with
Hadoop MapReduce. The syntax is straightforward so long as the de-
veloper is familiar with UNIX bash scripting. Pig hides complicated
MapReduce programs with simple notations for a dataflow program.
Internally, Pig scripts are compiled into sequences of MapReduce jobs,

Scalable Query and Analysis for Social Networks B 5

Plg ‘ JDBC | | ODBC ‘
GRUNT PiggyBank
Pig Driver
(Compiles, Optimizes, Executes)

N -

YARN Hadoop

Master

Resource

N Nod
Manger ame Node

Figure 1.1: Pig’s Architecture

which automate parallelization and make the code easy to maintain.
Pig also provides an interactive shell interface named GRUNT that
generates MapReduce jobs which depend on the type-in lines. Figure
1.1 depicts an overall architecture of Pig. As shown, Pig is standalone
and can run as a Java client on any worker node.

When a user submits their Pig scripts in a batch mode or enters
line-by-line data transformation commands in an interactive mode, a
default compiler handles the overall execution flows. This compiler
translates the entered Pig scripts into operators and forms top-down
Abstract Syntax Trees (AST) in different stages. It then visits the last
compiled AST from the MapReduce operators plan compiler and con-
structs MapReduce jobs in order. Figure 1.2 shows the dataflow and
lists all major steps. Similar to any programming language, Pig checks
syntax by parsing the user-submitted script into a parser written in
ANTLR. It then generates a logical LOP (Logical Operator Plan) for
further optimization. Generally a logical rules-based optimization is
performed without looking at the real data (this is different from tra-
ditional SQL or SQL-like technologies that take data schema as part of
the rules-based optimization). Pig’s main driver program converts each
MapReduce operator from Map-Reduce Operator Plan (MROperPlan)
objects into Hadoop JobControl objects with detailed descriptions,
input/output linkages, and other parameters, which are then passed
along to each worker node with a configuration in xml format. These
translations generate Java jar files that contain the Pig default Map
and Reduce classes, including the user-defined functions. The packages

6 B Book chapter

E InputFormat |

Py . sMap& i

; UDF class info is part of operator object - ; Reduce Class |
H

Syntax l:> Logical Physical I:> MR I:> MR
Checking Operators Operators Operators Jobs

DAG Operator Plan

Submit to Hadoop
ié:’é — ﬁ’ﬁ’

Figure 1.2: Pig High-Level Dataflow

Pig :>

Script

of jar files are submitted to Hadoop Job Manager, and job progress is
monitored until completion of the tasks.

An example of a WordCount program written in Pig Latin [32] is
provided in Figure 1.3. In a Pig dataflow, each line of code has only
one data transformation, which can be nested. The WordCount pro-
gram consists of seven lines of code, and the syntax is straightforward
and easy to understand. Generally, data is loaded as records in a rela-
tion/outer bag, and each field in a record is defined according to Pig’s
default data types: bag, tuple, and field. A bag is a set of unordered
columnar tuples. A tuple is a set of fields, where tuples in a bag can
contain flexible length of fields, and fields in the same column can have
different data types. Lastly, a field is the basic type of a piece of data.
Then, based on the supported data types, a developer applies the de-
sired data transformation and generates their results.

In our example, the first line defines an outer bag input and loads
a text document from HDFS. Each line of this text file is declared
as string (chararray in Pig Latin). The second and third line further
converts each line into English words and creates for each individual
word a single tuple by using the built-in function TOKENIZE and
relational statement FILTER. The fourth line aggregates instances of
the exact same word together and constructs a two-cells tuple for each
word. Here, the first cell of this tuple stores the text of this word,
while the second cell stores a list of the same word. The List length
is the total number of occurrences of this word. The fifth line counts
the amount of word items in the list and emits a word count pair
for each word <word, occurrences>. Line six uses the built-in order
statement and reorders the WordCount result with descending order.
Finally, line seven stores the ordered result into default file storage.
Other than the syntax shown in this paper, Pig provides operations

Scalable Query and Analysis for Social Networks B 7

and syntax patterns for various data transformations, although the
current version of Pig does not support optimized storage structures
such as indices and column groups.

—

input = LOAD ‘input.txt’
AS (line:chararray);

-

words = FOREACH input GENERATE . CREATE TABLE doc (line STRING);
. LOAD DATA INPATH ‘$documentsPath’

FLATTEN (TOKENIZE (line)) AS word; OVERWRITE INTO TABLE doc:
FILTER words BY word MATCHES ‘\\w+’; 3. INSERT INTO OVERWRITE DIRECTORY ‘SoutputPath’
GROUP filWords BY word; SELECT word, count (1) AS count FROM
FOREACH wdGroups GENERATE (SELECT explode (split(line, ‘\s’))
arou 59 word, o e e
COUNT (filWords) AS count; ORDER BY word;
ordWwdCnt = ORDER wdCount BY count DESC;
7 STORE ordWdCnt INTO ‘result’;

Figure 1.3: WordCount written in Pig [5] Figure 1.4: WordCount written in Hive

[N}
N

w

filWords
wdGroups
wdCount

IS

w”

o

Pig performs well for ETL applications, but it does not directly
support iterative computations. This implies that Pig can execute sim-
ple one-pass algorithms but not complex functions that need to apply
a computation repeatedly (e.g., for loop) which exist in graph, linear
algebra, and expectation-maximization computations. To write such
general data analysis applications using Pig, the control flow should be
similar to what is shown in Figure 1.5: an external wrapper script is
required because Pig syntax does not provide control flow statements.
This causes extra overhead of job startup and cleanup time when a
program runs in several rounds of MapReduce jobs. Furthermore, in-
puts of iterative applications are normally unchanged and cacheable
between iterations, whereas Pig has a DAG framework that does not
cache those inputs in memory and reuses data efficiently.

To generalize the usage of Pig for scientific applications, we need
to enable loop-awareness computation and in-memory caching; our re-

HDFS <+

in-memory __|
cache

Load &
Map UDF
...... with
Cond.

Loop

Terminated?

YARN

Figure 1.5: Iterative applications with Pig Figure 1.6: Iterative applications with
Pig+Harp

8 MW Book chapter

search project yielded a version of Pig for scientific applications based
on the DAG computation model. There are several iterative MapRe-
duce frameworks available as candidates to integrate with Pig, includ-
ing Twister [15], Spark [46], HaLoop [9], and Harp [47]. We chose
Harp as it is a plug-in to Hadoop that supports our required iteration
features, the result being referred to from here on as Pig+Harp [43].
With Harp integration, we replace the Hadoop Mapper interface with
Harp’s MapCollective, a long-running mapper to support conditional
loops. Subsequently, iterative applications implemented in Pig+Harp
can cache reusable data and replace the default GROUP BY oper-
ation with Harp’s collective communication interface featuring high-
performance data movement. Figure 1.6 shows a dataflow that can be
applied to iterative applications

1.2.2 Hive

Hive is a data warehouse solution for ad-hoc queries, from simple data
summarization to business intelligence applications and high-latency
queries for extremely large structured data sets stored on top of Hadoop
related file storage. Initially developed by the Facebook data infrastruc-
ture team, it is used for filtering and summarization of information from
their massive amount of stored social network data and support prod-
ucts associated with the collected data. Thousands of Hive jobs were
submitted daily since 2010 [8]. Hive uses a SQL-like language named
HiveQL which is very attractive for the traditional SQL community.
Similar to Pig, HiveQL queries are compiled into MapReduce jobs and
executed on top of Hadoop. Hive reintroduces a RDBMS technique -
Metastore- that stores data schemas and statistics as a service of an
in-memory system catalog to facilitate Hive’s compiler and data scan-
ning. Figure 1.7 shows the architecture of Hive.

When a user submits HiveSQL statements via any supported APIs,
Hive initially checks the syntax by an ANLTR parser, then cooperates
with Metastore for further type checking and semantic analysis, and
lastly generates an initial AST as a logical plan. This plan is then
optimized through a rule-based optimizer involving the schema and
indices metadata obtained from Metastore. Optimizations such as col-
umn pruning, pushdown, partition pruning, mapside joins, and join
reordering are also performed. Finally, a physical plan is generated
from the optimized logical plan and submits a sequence of MapReduce
jobs to Hadoop cluster.

Scalable Query and Analysis for Social Networks W 9

Hive JDBC || ODBC

| CLI H Thrift Server || Web ‘

HiveQL Driver
(compiles, optimizes, executes) Metastore

YARN Hadoopv

Master

Resource

Name Node DFS
Manger

Figure 1.7: Hive Architecture

Hive supports nested statements, and each statement represents a
single data transformation. In Figure 1.4, we see a WordCount pro-
gram written in HiveQL. Hive supports nested statements, and each
statement represents a single data transformation. The first line de-
clares a table named doc with only a string column line. The second
line reads files from the given path and overwrites the table doc. The
third line is a nested statement that splits all words of each record of
lines in table “doc”, then groups all emitted (word, 1) pairs from the
temporary table “words” in decreasing order with their occurrence. As
shown below, the overall syntax is very SQL friendly.

By default, Hive is compatible with local file systems HDFS [39]
and HBase [4]. A user is required to provide data schema by creating
tables before accessing the files in storage. For instance, prior to reading
existing tables in HBase, users need an additional step to make tables
in Metastore and link the schema of Hive to the HBase tables, such as
row key and column families of the reading tables.

1.2.3 Spark SQL/Shark

Spark SQL [2] and Shark [44] are other open source projects directly
inspired by Hive. Both use Spark runtime and RDD [45] as the core
engine to execute their physical plan on top of YARN. Spark SQL is the
latest release replacing Shark, now merged as a branch project under
the Spark ecosystem.

10 B Book chapter

Store Spark SQL

Apache Spark

Figure 1.8: Spark SQL Architecture [2]

Spark SQL reuses Hive’s query parser to generate a logical operator
plan. With this compatibility support, general Hive queries can run on
Spark SQL without any changes to the execution script. Spark SQL
has its own rule-based logical operator plan optimizer for matching the
physical operators that run on Spark. As claimed by Spark runtime
developers, this allows Spark SQL queries to run better on RDD oper-
ations and best match the Spark execution model, rather than tuning
Spark low-level execution to support Hive’s Hadoop implementation.
The architecture of Spark SQL appears in Figure 1.8. Spark SQL can
support most of the HiveQL statements with several limitations; e.g.,
bucketed tables in Hive are not currently supported in Spark SQL.

1.3 PIG, HIVE AND SPARK SQL COMPARISON

Before comparing the differences between Pig, Hive and Spark SQL,
we need to look into two fundamental terms: dataflow system and data
warehouse system.

Dataflow system is a type of data processing system where data is
transformed from one format to another via different processing units in
a directed path. Data can be structured (with a predefined schema) or
unstructured (e.g., logs); it therefore requires customized data selection
and operations in order to extract meaningful information. Pig falls
into this category. Data warechouse is a system that handles cleaned,
structured and cataloged data in organized hierarchical data storage
units. Data is available to observers for conducting data analysis. Hive
and Spark SQL are designed for the data warehouse community.

Table 1.8 gives a comprehensive comparison between Pig, Hive and
Spark SQL. Even though they are designed for different systems and
applications, these three tools share many common features, operations
and functions.

Pig can be used for unstructured raw data batch processing and
simple statistical analytics, especially with massive logs for text min-

Scalable Query and Analysis for Social Networks B 11

ing. It is more like an alternative to Hadoop MapReduce applications
in high-level abstraction with an extensible subset of general data op-
erations. Data is stored in HDFS or HBase with high-latency data
scanning operations. Pig scans data entirely (i.e., it must scan all data
for filtering fields with numeric type less than 10) without the help of
data indices. As such, it is considered “slower” in supporting ad-hoc
queries than Hive.

Meanwhile, Hive and Spark SQL are SQL-like distributed systems
that run high-latency queries for data sets stored on top of MapReduce
(HDFS) file system. Hive still scans data from disk or HDFS directly
for assigned map/reduce tasks. Metastore provides the data schema
and indices while scanning the data. Spark SQL uses Hive’s query
parser and Metastore generates the operator plan, but it then uses
Catalyst as its logical plan generator and optimizer (Shark uses Hive’s
query planner), executes with Spark, and stores the processed/queried
data into DataFrame (columnar RDD in Shark) instead of files on
HDFS. Here rule-based optimizations of Hive/Shark and Spark SQL
are expandable. The use of RDD provides in-memory reusable access to
the scanning data. It saves significant disk I/O and job restart overhead
if the data is hit frequently, especially when the cases of mixing ad-hoc
queries and further sophisticated applications are involved within the
lines of the same submitted program. Spark SQL is still a newly released
ongoing project, so some query plan optimizations of Hive/Shark are
not included in Spark SQL such as block level bitmap indices and
virtual columns. Catalyst is the core difference between Shark and
Spark SQL. DataFrame is a special type of row objects RDD that has
associated data schema such as column field name and data type as a
collection of named and typed tuples. It can then support operations
from the submitted relational queries in line. In addition, with the help
of the known type of the row objects, Datakrame can be cached with
better compression than general RDD objects.

All of Pig, Hive and Spark SQL introduce User-Defined Functions
(UDF) for advanced tuple/record-based data transformation, which
enables the possibility to implement special computation and sophisti-
cated algorithms in addition to the basic queries.

1.4 AD-HOC QUERIES: TRUTHY AND TWITTER DATA

Ad-hoc queries are the most common benchmark for ETL applications.
This also applies to Apache high-level languages, which are mainly de-

12 B Book chapter

signed to support ETL operations. Here we use Truthy project and
Twitter-generated social media data to evaluate ad-hoc query perfor-
mance among these runtimes.

Truthy [30, 21] is a public social media observatory developed as
a research project at Indiana University. It analyzes and visualizes in-
formation diffusion on Twitter. Truthy monitors and collects Twitter
data in real-time directly through the Twitter public steaming API.
The overall size of compressed historical raw data from 2010 till April
2015 is about 3.2TB. IndexedHBase [19, 20] is used to store, load, and
index this data as tables into HBase on a private large-storage, high-
performance, and large-memory cluster called MOE. As of today, the
overall data on HBase including the raw data tables and index tables
(as well as the standard 3 replicas) occupies nearly 133TB of disk space.
We expect to continue storing more historical data, as the Truthy team
aims to perform innovative and large-scale social network research and
analysis to understand how information propagates in complex socio-
technical systems. Many researchers [14, 13, 12, 11, 38, 37] have built
their prototypes, models and analyses based upon this complex infras-
tructure, which shows the capability to capture the spread of informa-
tion, from political discourses to trending topics [17], the evolution of
user behavior [41], and even the presence of social bots and orchestrated
campaigns [16].

The data collected from the Twitter streaming API consists of
tweets containing various attributes. The most common attributes used
for intensive analysis include hashtags, user metadata, text and me-
dia content, retweets information, user mentions, and specific time in-
tervals. Truthy identifies this information and utilizes the concept of
“meme” [25] (a piece of data that corresponds to specific topics, com-
munication channels, or shared elements by people in a social network)
to construct a set of temporal queries for extracting tweets’ informa-
tion for further data intensive analysis. These queries can be classified
into two categories [20]: ad-hoc queries for simple tweet retrieval with
the help of index tables, and combination of tweet retrieval with extra
data transformation. We only discuss the ad-hoc queries here because
it is the best practice for matching the common features of high-level
languages. Table 1.1 shows four different queries that firstly search the
related index table and then redirect the obtained tweets back to the
user.

Previous research [10, 19] utilized the above queries on top of fur-
ther data mining techniques, such as eigenvector modularity [31] and

Scalable Query and Analysis for Social Networks B 13

label propagation [36], on two datasets about political discussion col-
lected during the six weeks leading up to the 2010 U.S. congressional
midterm elections and 2012 U.S. presidential elections. The results
shown in [10, 19] prove that the retweet networks exhibited a highly-
segregated partisan structure; users of those tweets are mainly split
into two homogeneous communities corresponding to the political left
and right leanings.

Table 1.1: TRUTHY’S AD-HOC QUERIES FOR SIMPLE TWEETS RETRIEVAL

Queries Description Index Table Name

get-tweets-with- | Search tweets with given | memelndexTable
meme memes such as hashtags,
user-mentions, and URLs
get-tweets-with- | Search tweets with given | textIndexTable
text keywords
get-tweets-with- | Search tweets with given | userTweetsIndexTable

user user information, e.g., user
ID and screen name

get-retweets Search retweets with given | retweetIndexTable
tweet Ids

1.5 ITERATIVE SCIENTIFIC APPLICATIONS

Many domain scientists who work on scientific applications use pro-
gramming languages such as Python, Matlab and R to perform stan-
dard data-analysis tasks. Oftentimes, such analysis involves sophisti-
cated data mining and machine learning techniques that must run in
several rounds of computation to complete a full task. With the built-
in mathematics and statistical operations in Pig and Hive, these two
runtimes could be candidate tools to support scientific applications run
with very large-scale data. Due to the fact that Pig and Hive do not
support iterative applications directly, we need to extend them with an
external wrapper script/program to handle the loop control and link
the program inputs from HDFS between iterations. On the other hand,
Pig+Harp integrated Harp’s collective communication API to support
iterative application as well as single pass in common Hadoop jobs for
both high-level language tools.

14 W Book chapter

1 raw = LOAD $hdfsInputDir USING 1 CREATE EXTERNAL TABLE IF NOT EXISTS
PigKmeans (' $centroids’, iég:{{igﬁi‘;;i;%g;zxxls'r%:zm
‘$numOfCentroids’) AS (datapoints ; prop tapre TF ExrsTS i eansTable;

2 dptSBag - FOREACH raw GENERATE 3 \ZRE:SElZAEiit;n;z:l::e‘ 1sTable (x double, y double,
FLATTEN (datapoints) AS dptInStr; LOGATION. -smfsoutp;:nm

3 dpts = FOREACH dptSBag GENERATE 4 INSERT 'E TABLE interKmeansTable

y nsTable.ret.x)/SUM(KmeansTable.ret.count),
STRSPLIT (dptInStr, ‘,’, 5) ble.ret.y) /SUM(KmeansTable.ret.count),
AS splitedDP; Z‘u:ﬂ(Kmea,;; able.ret.z) /SUM(KmeansTable.ret.count),
4 grouped = GROUP dpts BY splitedDP.$0; FROM
_ (SELECT explode (Kmeans (INPUT__FILE_ NAME,

5 newCens = FOREACH grouped GENERATE 'SlnAtCen)‘jlcldOanFS’/l/ ‘$centroidSize’)) AS ret

CalculateNewCentroids ($1); FROM $INPUTTABLE T) KmeansTable

GROUP BY KmeansTable.ret.assignedcentroid;

6 STORE newCens INTO ‘output’;

Figure 1.9: Pig K-means for a single iteration Figure 1.10: Hive K-means for a single itera-
tion

1.5.1 K-means Clustering and PageRank

We present two popular algorithms, K-means clustering and PageR-
ank computing, as our standard benchmarks. K-means clustering [29]
is one of the standard clustering algorithms that has been widely used
for finding distance and similarity among a set of objects with multidi-
mensional vectors. In addition to various applications in social media
analysis [18], studies involving large-scale image classification [27, 35]
have used this technique on high-dimensional (over a hundred dimen-
sions) SIFT descriptors [28]. This allowed for creating a training dataset
of visual vocabulary to automatically determine specific characteristics
of a given photo, e.g., whether it was taken in an urban or rural environ-
ment. Meanwhile, the PageRank [33] webpage-ordering algorithm was
introduced by Google co-founders, Larry Page and Sergey Brin while
they were researching the next generation of search engine in 1996.
Eventually, this ranking algorithm became the key technology of the
Google search engine, and it was applied to several general-purpose
graph or network problems in bibliometrics, social network analysis,
and recommendation systems. We show the difference in implementa-
tions below by using Pig and Hive.

Pig K-means consists of three components: a Python control-flow
script, a Pig data-transform script for a single iteration, and two K-
means user-defined functions written with a Pig provided Java inter-
face. A single iteration of K-means written in Pig Latin is included
in Figure 1.9. Our customized Loader yields the aggregated centroids
into memory as vector objects loaded from the distributed cache on
disk before computing the Euclidean distances for all data points at
each iteration of the algorithm. Every loader outputs the assigned cen-
troids and data points as fields in a single bag; each field in a bag is
defined as string data type which further splits into tuples to match

Scalable Query and Analysis for Social Networks B 15

1 centds = LOAD $hdfsInputDir USING
HarpKmeans (‘$initCentroidOnHDFS’,

‘$numOfCentroids’, ‘$numOfMappers’,
‘$iteration’, ‘$jobID’, ‘$Comm’)
AS (result);

2 STORE centroids INTO ‘$hdfsOutputDir’;

Figure 1.11: Pig+Harp K-means

Pig’s GROUP operation and collect partial centroid vectors from map-
pers. It then takes the average of all partitions, emits to a final centroids
file and saves it to HDF'S.

Hive K-means is written in SQL-like syntax and uses a UNIX bash
script as the loop conditions wrapper for supporting iterations. Figure
1.10 depicts a single iteration of K-means written in HiveQL. Data
points and centroids are originally stored on HDFS during each iter-
ation, where they overwrite the intermediate centroids to HDFS. The
default INPUT__FILE__NAME field provided by Hive is used, and our K-
means UDF directly loads entire files for computation instead of using
Hadoop InputFormat with a series of input splits. General data aggre-
gations such as GROUP BY and SUM are executed, while Euclidean
distance computation is handled by the K-means UDF.

Pig+Harp K-means script in Figure 1.11 illustrates a similar idea
using R. Users only provide the parameters, such as number of map-
pers, total amount of iterations, and communication patterns used for
global data synchronization. In the case of executing Pig+Harp K-
means, a customized Loader in each Mapper first loads the initial cen-
troids and data points from HDFS to memory and caches the data
points for all iterations. Then the UDF computes Euclidean distances
and emits partial centroids locally. The Harp communication layer
then exchanges these partial centroids in each mapper. By default,
Pig+Harp K-means UDF uses AllReduce to synchronize among all
partitions. The program reuses the same set of mapper processes until
exit conditions have been reached.

For Pig PageRank, we use a model with fewer UDF functions by
leveraging Pig built-in operators. Figure 1.12 has a single iteration of
the PageRank algorithm, which is created and iteratively invoked by
a Java wrapper. The script involves the following steps: a) Load the
given input file using the custom loader into variable raw; b) Extract
the outgoing URLs and emit both outgoing URL and partial page rank
from the source URL; ¢) CO-GROUP above two aliases to calculate
new page rank and store it in an alias newPgRank; d) Store new page

16 W Book chapter

1 CREATE EXTERNAL TABLE pageRankInput(line String)
LOCATION ‘$INPUTDIR’ ;

1 raw = LOAD ‘S$InputDir’ USING 2 CREATE TABLE PageRankComputeTable (pagerankCell
CmLoader (’ $noOfURLs’ ,’ $itrs’) struct<source:int, pagerank:double, outLinks:array<int>>)
. . CLUSTERED BY (pagerankCell)
AS (source,pagerank, out:bag); INTO $MAP SIZE BUCKETS
2 prePgRank = FOREACH raw GENERATE LOCATION ‘$tmpPageRankResult’;
FLATTEN (out) AS source, 3 INSERT OVERWRITE TABLE PageRankComputeTable
ECT Initiall R i N fUrls’ r
pagerank/SIZE (out) AS pagerank; iigMCpagZR;nilszg:;ank(lme' FRumOEUELs’) AS ret
3 newPgRank = FOREACH (COGROUP raw BY source, 4 INSERT OVERWRITE TABLE PageRankComputeTable
prePgRank BY source OUTER) SELECT named_struct (’ source’, T1.pagerankCell.source,
‘pagerank’, PageRank(T2.pagerank, $dpFactor, $noOfURLS),
GENERATE ‘outLinks’, T1.pagerankCell.outLinks) AS cell
group AS source, FROM
(1-$dpFactor) + PageRankComputeTable T1
LEFT OUTER JOIN
$dpFactor* (SUM (prePgRank.pagerank’ (SELECT outlink,
IS NULL?0:SUM (prePgRank.pagerank) | SUM (pagerankCell.pagerank/size (pagerankCell.outlinks))
AS pagerank
AS pagerank, FROM PageRankComputeTable
FLATTEN (raw.out) AS out; LATERAL VIEW
4 STORE newPgRank INTO ‘SoutputFile’; explode (pagerankCell.outlinks) outLinkTable AS outlink

Group by outlink) T2
ON (T1.pagerankCell.source = T2.outlink);

Figure 1.12: Pig PageRank for a single itera- Figure 1.13: Hive PageRank for a single iter-
tion ation

1 pagerank = LOAD ‘$InputDir’ USING
HarpPageRank (' $totalUrls’,
‘$numMaps’, ‘$itrs’, ‘$jobID’)
AS (result);

2 STORE pagerank INTO ‘Soutput’;

Figure 1.14: Pig+Harp PageRank

rank in a HDFS temp file, which will be the input file for the next
iteration. One drawback of this program is that the default Pig runtime
optimizer creates extra mappers for the final STORE step when it calls
the raw and prePgRank variables for CO-GROUP operators, which
utilizes extra computing and memory resources.

Hive PageRank follows a similar logic as Pig PageRank, but the
HiveQL script uses tables as data abstraction and nested queries for
computation, as well as OUTER LEFT JOIN seen in Figure 1.13.

In Pig+Harp PageRank implementation, we provide a new data
loader UDF to calculate the probabilities for each web page. For the
first iteration, data is loaded in a graph data structure where vertices
are partitioned across all worker nodes. Each vertex receives all in-
edges information by calling regroupEdges collective communication,
and the number of out-edges is sent to all vertices by calling an AllMs-
gToAllVtx operation. The vertex and edge information is cached in
memory for all iterations. Subsequently the PageRank values of each
vertex are updated during every iteration and distributed by an All-
Gather communication until the program satisfies break conditions,
e.g., the end of iterations. The script shown in Figure 1.14 is similar to
that of Pig+Harp K-means.

Scalable Query and Analysis for Social Networks B 17

1.6 BENCHMARKS

We have performed a set of extensive ad-hoc queries against Twit-
ter’s social network data using these high-level languages to illustrate
their overheads and performance differences. We compare two scientific
applications, K-means and PageRank, to evaluate the language expres-
siveness and performance in support of generic scientific algorithms in
regards to high-level data abstractions, operations and execution flows.
Currently we are not able to perform Spark SQL tests as the existing
Spark SQL (latest version 1.3.1 as of April 2015) only supports a subset
for HiveQL query and is best compatible with Hive 0.13.1. This limited
compatibility causes our tests to fail. For example, when Spark SQL
scans data from HBase, although the high-level abstraction StringType
is used, Spark SQL in low level execution retrieves HBase’s record as
String instead of LazyString in Hive, which causes data loss to our
ad-hoc queries test cases [3].

Our experiments run on MOE, a large-storage, large-memory and
high-performance private cluster at Indiana University devoted to the
Truthy project [30, 38, 21]. It consists of 3 login nodes and 10 compute
nodes, where each login node is set up with two Intel(R) Xeon(R) CPU
E5-2620 v2 CPUs, 64 GB memory, and each compute node has five
Intel(R) Xeon(R) CPU E5-2660 v2 CPUs, 128 GB memory, 48TB HDD
and 120GB SSD. All nodes are interconnected with a 10Gb Ethernet.
Table 1.2 shows the specifications of MOE.

Table 1.2: HARDWARE SPECIFICATION OF MOE

CPU RAM DISK NETWORK
Login Node | 2 x Intel(R) | 64GB 120 SSD 10Gb Ether-

Xeon(R) net

CPU E5-

2620 v2
Computer | 5 x Intel(R) | 128GB 48TB HDD | 10Gb Ether-
Node Xeon(R) + 120GB | net

CPU E5- SSD

2660 v2

YARN Hadoop cluster on MOE is configured with a master on
an independent login node. Meanwhile HBase uses another login as
the master node and runs a ZooKeeper on each login node. YARN’s
NodeManager, HDFS’s DataNode and HBase’s RegionServer run on

18 B Book chapter

Table 1.3: RUNTIME SOFTWARE SPECIFICATION OF MOE

Version Memory Disk
YARN 2.5.1 66GB per node | 48TB per node
Pig 0.14.0 2GB per worker | Data on HDFS
Hive 1.0.0 2GB per worker | Data on HDFS
Pig+Harp 0.14, 0.1.0 | 2GB per worker | Data on HDFS
HBase 0.94.23 30GB per node | Data on HDFS
IndexedHBase | 0.94 branch | 2GB per worker | Data on HBase

individual nodes and memory is shared among these processes. Table
1.3 specifies the software and runtime settings of MOE.

1.6.1 Performance of Ad-hoc Queries

We present the performance of running Truthy’s queries on Twitter
data using IndexedHBase in Figure 1.15. The query get-tweets-with-X
initiates two steps; first it searches for tweet IDs from the related index
table on HBase by given keys such as meme, text or user ID under a
specified time interval. The second step reuses the obtained tweet IDs
to scan related tweets from the raw tweets table in HBase and stores the
retrieved tweets on HDFS. The overall performance is dominated by
the total amount of retrieved tweet IDs. Table 1.4 displays the number
of records obtained from each query; we use hashtag “#ff” as meme,
keyword “NBA” as text, and randomly choose a user ID to search
tables in the December 2012 dataset.

~
S
3

@ IndexedHBase CMD mPig B Hive

w a2 w9
8 8 g &
8 8 8 8

~
S
38

Overall Execution Time (seconds)

100

get-tweets-with-text

get-tweets-with get-tweets-with-userid

Figure 1.15: Truthy’s get-tweets-with-X queries on Twitter data

The results in Figure 1.15 show that the IndexedHBase API
command-line script outperforms the other solutions. This is because
it calls an optimized Hadoop MapReduce job directly, and even the
“search for tweet IDs” step is run as a local process. The Pig and Hive
solutions execute these two steps in MapReduce jobs, therefore their

Scalable Query and Analysis for Social Networks B 19

performance is comparable. Hive requires more time for setting up the
Table schema (including DROP and CREATE statements) in Metas-
tore and Hive-related parameters in script for each query. As a result
Hive performs the slowest in all of our tests. Table 1.5 lists the lines
of code in script and the amount of submitted Hadoop jobs for each
runtime based on query “get-tweets-with-X”.

Table 1.4: SIZE OF RECORDS OBTAINED BY “get-tweets-with-X”

get-tweets-with-
meme

1570261

get-tweets-with-
text

get-tweets-with-
userid

202076 22

of Records

Table 1.5: SCRIPT AND EXECUTION COMPARISON OF “get-tweets-with-X”

get-tweets-with-X IndexedHBase | Pig Hive
Lines of code in script | 1 11 17
Hadoop job(s) 1 2 2
Map(s)/Reduce(s) 24/0 1/0, 24/0 1/24,24/0

1.6.2 Performance of Data Analysis

We use K-means and PageRank to evaluate the difference in perfor-
mance for our solutions. Both algorithms are implemented in the same
dataflow logic but using different syntax in Pig, Hive and Pig+Harp
implementations.

The tests for K-means algorithm are shown in Table 1.6, where we
compute 10 iterations for two data sets: a 100 million 3-dimensional
data points against 500 centroids, and a 100 million 3-dimensional data
points against 5000 centroids. The dataset is split into 128 partitions
running 128 mappers and 8 reducers. Each mapper or reducer runs on
1 CPU core with 2GB memory.

Table 1.6: SCRIPT AND EXECUTION COMPARISON OF K-MEANS

K-means Pig+Harp | Pig Hive
Lines of code in script 3 11 13
Hadoop job(s) per iteration | 1 1 1
Map(s)/Reduce(s) 128/0 128/8 128/8

Figure 1.16 illustrates the total execution time for the K-means
algorithm with each runtime. Pig+Harp outperforms the other two
runtimes due to in-memory objects cache for the loaded data points

20 B Book chapter

Table 1.7: SCRIPT AND EXECUTION COMPARISON OF PAGERANK

K-means Pig+Harp | Pig Hive
Lines of code in script 3 8 16
Hadoop job(s) per iteration | 1 1 4
Map(s)/Reduce(s) 64/0 128/64 64/64,
64/64,
128,64,
64/64
1000
900 B Pig+Harp @Pig OHive __ 1200 M Pig+Harp EPig ElHive
jgg 1000

600
500
400
300
200
100

800

600

400

Overall Execution Time (seconds

Overall Execution Time

200

100m500c 100m5000c 0
Dataset size 1000k URLs 2000k URLs

(m: million data points, c: amount of centroids) Dataset Size

Figure 1.16: K-means Result Figure 1.17: PageRank Result

and centroids, fast network I/O for data aggregation, and reduced over-
heads of the job restart between iterations. In contrast, the Pig and
Hive implementations have a huge cost due to reloading, at each iter-
ation, of the intermediate data points and centroids from HDFS. The
execution plans for Pig and Pig+Harp are similar. Pig K-means gen-
erates 1 Hadoop job per iteration and Pig+Harp K-means generates a
single job for all iterations.

In the PageRank test, we compute 10 iterations for two data sets: 1
million numeric URLs and a 2 million numeric URLs. The data is split
into 64 partitions running 64 mappers and 64 reducers. Each mapper
or reducer has 1 CPU core and 2GB memory.

Figure 1.17 presents the execution time of PageRank algorithm
where Pig+Harp performs the best by storing the adjacency matrices
as objects in memory, exchanging partial PageRank values via network
I/0, and using long-running tasks.

As shown in Table 1.7, a maximum of 128 mappers (rather than our
expected 64 mappers) are invoked for the partitions. This is due to the
use of LEFT OUTER JOIN both in Pig and Hive implementation, and
each partition is separately loaded in an extra mapper and prepared
for the JOIN operations. In the case of Hive PageRank, although the
HiveQL logic is the same as Pig’s, Hive’s physical plan executor gener-

Scalable Query and Analysis for Social Networks B 21

ates a total of 4 Hadoop jobs per iteration, which results in a dramatic
performance loss.

1.7 CONCLUSION

In this chapter, we investigated the Apache high-level languages and
several runtimes of Hadoop ecosystems by conducting tests on real
world applications with social media data. Terabytes of data streams
are collected every day and stored on different large scale storage sys-
tems such as HDFS and HBase. Pig, Hive, and Spark SQL have been
widely adopted by developers and domain scientists for rapidly building
their prototypes and performing daily analysis tasks on both new and
historical data. Although Pig and Hive have provided desirable features
and performance for ad-hoc queries, these high-level abstractions lack
support for interactive applications that require in-memory caches and
fast job restart between iterations for sophisticated post-query data
analysis. This chapter compares different approaches of building high-
level Dataflow Systems and ultimately demonstrates an integrated so-
lution with Pig and Harp (called Pig+Harp) that outperforms both Pig
and Hive by a factor of 2 to 10 in overall metrics. Our experimental re-
sults show that these high-level languages and their integrations make
it easier for users to perform data analysis, and improve the flexibility
of database systems through user-defined aggregations.

22 B Book chapter

Table 1.8: CROSS COMPARISON FOR PIG, HIVE AND SPARK SQL

DDL by tables)

Pig Hive Spark SQL
Target Sys- | Dataflow Data warehouse | Data ware-
tem house, then
data analytic
applications
Syntax Pig Latin HiveQL (SQL- | HiveQL (SQL-
like) like)
Script Parser | ANTLR ANTLR ANTLR
Logical Plan | Script — AST | Script — AST | Catalyst
Compiler — Operator | — Operator
Trees Trees (DML

Logical Plan

Operators Trees

Operator Trees

Operator Trees

Optimizer (Rules based) (Rules based) (Rules based)
Physical /| Operators Trees | Operators Trees | Operators Trees
MR Com- | — MR jobs — MR jobs — Spark jobs on
piler YARN
Structured Unstructured, Structured tab- | Structured tab-
or Unstruc- | structured, ular data ular data
tured Data nested Struc-
tured raw data
Catalog Ser- | HCatalog (Op- | Metastore and | Metastore and
vices tional) HCatalog HCatalog
Primitives INT, LONG, | TINYINT, ByteType,
Data Type FLOAT, SMALLINT, ShortType,
DOUBLE, INT, BIG- | IntegerType,
CHARARRAY, | INT, FLOAT, | LongType,
ete. DOUBLE, etc. FloatType,
DoubleType
etc. And most
of Hive’s Primi-
tives DataType
Non- map, tuple, bag | maps, arrays, | ArrayType,
Primitives structs, union MapType,
Data Type StructType

Scalable Query and Analysis for Social Networks B 23

Relational GROUP, DE- | SELECT, SELECT,
Statements FINE, FILTER, | GROUP BY, | GROUP BY,
FOREACH, ORDER BY, | ORDER BY,
JOIN, UNION, | CLUSTER BY, | CLUSTER BY,
ORDER BY, | DISTRIBUTE JOIN, UNION,
SAMPLE, etc. BY, JOIN, | TABLESAM-
UNION, TA- | PLE, etc.
BLESAMPLE,
etce.
Math Opera- | ADDITION, ADDITION, ADDITION,
tors SUBTRAC- SUBTRAC- SUBTRAC-
TION, MULTI- | TION, MULTI- | TION, MULTI-
PLICATION, PLICATION, PLICATION,
DIVISION, DIVISION, DIVISION,
MODULO, etc. | MODULO, etc. | MODULO, etc.
Logical Op- | AND, OR, IN, | AND, OR, | AND, OR,
erators NOT, EQUAL, | NOT, IN, | NOT, IN,
NOT EQUAL, | EQUAL, EQUAL,
LESS THAN, | NOT EQUAL, | NOT EQUAL,
GREATER LESS THAN, | LESS THAN,
THAN, GREATER GREATER
PATTERN THAN, THAN,
MATCHING PATTERN PATTERN
MATCHING, MATCHING,
EXISTS, IF, | EXISTS, IF,
COALESCE, COALESCE,
CASE CASE
Collection AVG, SUM, | AVG, SUM, | AVG, SUM,
and Ag- | COUNT, CON- | COUNT, CON- | COUNT, CON-
gregate CAT, MAX, | CAT, MAX, | CAT, MAX,
Functions MIN, SIZE, | MIN, SIZE, | MIN, SIZE,
SUBSTRACT, | SUBSTRACT, | SUBSTRACT,
ete. ete. ete.
String Func- | Yes Yes Yes
tions
DateTime Yes Yes Yes
Functions
UDF Sup- | Yes Yes Yes (partially
port Hive UDF)
JDBC/Thrift | Partial (No | Yes Yes
Support Thrift APT)
Index Table | No Yes Yes

24 W Book chapter

processing

Storage Local Disk, | Local Disk, | Local Disk,
Layer HDFS, HBase HDFS, HBase | HDFS, HBase
(Optional) (Optional)

Applications | Data filtering, | Ad-hoc queries, | Ad-hoc queries,
ETL, log anal- | ODBC/JDBC ODBC/JDBC
ysis, general | applications, applications,
statistic appli- | high-latency low-latency
cations, text | queries queries

Bibliography

1]
2]
3]

Apache hadoop. http://hadoop.apache.org/core/.
Apache spark sql. https://spark.apache.org/sql/.

Test cases for scalable query and analysis for social net-
works. https://github.com/taklwu/apache-high-level-
languages-survey.

Hbase implementation of bigtable on hadoop file system. http:
//hbase.apache.org/, 2010.

Pig programming tools. http://en.wikipedia.org/wiki/Pig_
(programming_tool), 2014.

Ablimit Aji, Xiling Sun, Hoang Vo, Qioaling Liu, Rubao Lee, Xi-
aodong Zhang, Joel Saltz, and Fusheng Wang. Demonstration of
hadoop-gis: A spatial data warehousing system over mapreduce.
In Proceedings of the 21st ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, pages
528-531. ACM, 2013.

Yael Amsterdamer, Susan B Davidson, Daniel Deutch, Tova Milo,
Julia Stoyanovich, and Val Tannen. Putting lipstick on pig: En-
abling database-style workflow provenance. Proceedings of the
VLDB Endowment, 5(4):346-357, 2011.

Dhruba Borthakur, Jonathan Gray, Joydeep Sen Sarma, Kannan
Muthukkaruppan, Nicolas Spiegelberg, Hairong Kuang, Karthik
Ranganathan, Dmytro Molkov, Aravind Menon, Samuel Rash,
et al. Apache hadoop goes realtime at facebook. In Proceedings
of the 2011 ACM SIGMOD International Conference on Manage-
ment of data, pages 1071-1080. ACM, 2011.

26 W Bibliography

[9]

[10]

[11]

[13]

[14]

[16]

[17]

[18]

Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D
Ernst. Haloop: efficient iterative data processing on large clus-
ters. Proceedings of the VLDB Endowment, 3(1-2):285-296, 2010.

Michael Conover, Jacob Ratkiewicz, Matthew Francisco, Bruno
Gonffalves, Filippo Menczer, and Alessandro Flammini. Political
polarization on twitter. In I[CWSM, 2011.

Michael D Conover, Clayton Davis, Emilio Ferrara, Karissa McK-
elvey, Filippo Menczer, and Alessandro Flammini. The geospatial
characteristics of a social movement communication network. PloS

one, 8(3):e55957, 2013.

Michael D Conover, Emilio Ferrara, Filippo Menczer, and Alessan-
dro Flammini. The digital evolution of occupy wall street. PloS
one, 8(5):€64679, 2013.

Michael D Conover, Bruno Gonffalves, Alessandro Flammini, and
Filippo Menczer. Partisan asymmetries in online political activity.
EPJ Data Science, 1(1):1-19, 2012.

Joseph DiGrazia, Karissa McKelvey, Johan Bollen, and Fabio Ro-
jas. More tweets, more votes: Social media as a quantitative indi-
cator of political behavior. PloS one, 8(11):¢79449, 2013.

Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne,
Seung-Hee Bae, Judy Qiu, and Geoffrey Fox. Twister: a runtime
for iterative mapreduce. In Proceedings of the 19th ACM Interna-
tional Symposium on High Performance Distributed Computing,
pages 810-818. ACM, 2010.

Emilio Ferrara, Onur Varol, Clayton Davis, Filippo Menczer, and
Alessandro Flammini. The rise of social bots. arXiv preprint
arXw:1407.5225, 2014.

Emilio Ferrara, Onur Varol, Filippo Menczer, and Alessandro
Flammini. Traveling trends: social butterflies or frequent fliers?
In Proceedings of the first ACM conference on Online social net-
works, pages 213-222. ACM, 2013.

Xiaoming Gao, Emilio Ferrara, and Judy Qiu. Parallel clustering
of high-dimensional social media data streams. arXiv preprint
arXiv:1502.00316, 2015.

[19]

22]

[27]

Bibliography B 27

Xiaoming Gao and Judy Qiu. Social media data analysis with in-
dexedhbase and iterative mapreduce. In Proc. Workshop on Many-
Task Computing on Clouds, Grids, and Supercomputers (MTAGS
20183) at Super Computing, 2013.

Xiaoming Gao and Judy Qiu. Supporting end-to-end social media
data analysis with the indexedhbase platform. In Invited talk at
6th Workshop on Many-Task Computing on Clouds, Grids, and
Supercomputers (MTAGS) SC13, 2013.

Xiaoming Gao, Evan Roth, Karissa McKelvey, Clayton Davis, An-
drew Younge, Emilio Ferrara, Filippo Menczer, and Judy Qiu.
Supporting a social media observatory with customizable index
structures: Architecture and performance. In Cloud Computing
for Data-Intensive Applications, pages 401-427. Springer, 2014.

Alan F Gates, Olga Natkovich, Shubham Chopra, Pradeep Ka-
math, Shravan M Narayanamurthy, Christopher Olston, Benjamin
Reed, Santhosh Srinivasan, and Utkarsh Srivastava. Building a

high-level dataflow system on top of map-reduce: the pig experi-
ence. Proceedings of the VLDB Endowment, 2(2):1414-1425, 2009.

Tim Hegeman, Bogdan Ghit, Mihai Capota, Jan Hidders, Dick
Epema, and Alexandru Iosup. The btworld use case for big data
analytics: Description, mapreduce logical workflow, and empirical
evaluation. In Big Data, 2013 IEEFE International Conference on,
pages 622-630. IEEE, 2013.

CJ Hutto and FEric Gilbert. Vader: A parsimonious rule-based
model for sentiment analysis of social media text. In Fighth Inter-
national AAAI Conference on Weblogs and Social Media, 2014.

Mohsen JafariAsbagh, Emilio Ferrara, Onur Varol, Filippo
Menczer, and Alessandro Flammini. Clustering memes in social
media streams. Social Network Analysis and Mining, 4(1):1-13,
2014.

Yeonhee Lee and Youngseok Lee. Toward scalable internet traffic
measurement and analysis with hadoop. ACM SIGCOMM Com-
puter Communication Review, 43(1):5-13, 2013.

Yunpeng Li, David J Crandall, and Daniel P Huttenlocher. Land-
mark classification in large-scale image collections. In Computer

28 W Bibliography

[30]

[33]

[34]

vision, 2009 IEEE 12th international conference on, pages 1957—
1964. IEEE, 2009.

David G Lowe. Distinctive image features from scale-invariant
keypoints. International journal of computer vision, 60(2):91-110,
2004.

James MacQueen et al. Some methods for classification and analy-
sis of multivariate observations. In Proceedings of the fifth Berkeley
symposium on mathematical statistics and probability, volume 1,
pages 281-297. Oakland, CA, USA., 1967.

Karissa McKelvey and Filippo Menczer. Design and prototyp-
ing of a social media observatory. In Proceedings of the 22nd
international conference on World Wide Web companion, pages
1351-1358. International World Wide Web Conferences Steering
Committee, 2013.

Mark EJ Newman. Finding community structure in networks us-
ing the eigenvectors of matrices. Physical review E, 74(3):036104,
2006.

Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Ku-
mar, and Andrew Tomkins. Pig latin: a not-so-foreign language
for data processing. In Proceedings of the 2008 ACM SIGMOD in-
ternational conference on Management of data, pages 1099-1110.
ACM, 2008.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Wino-
grad. The pagerank citation ranking: Bringing order to the web.
1999.

Terence J. Parr and Russell W. Quong. Antlr: A predicated-11 (k)
parser generator. Software: Practice and Experience, 25(7):789—
810, 1995.

Judy Qiu and Bingjing Zhang. Mammoth data in the cloud: Clus-
tering social images. Clouds, Grids and Big Data, 2013.

Usha Nandini Raghavan, Reka Albert, and Soundar Kumara. Near
linear time algorithm to detect community structures in large-scale
networks. Physical Review E, 76(3):036106, 2007.

[37]

[38]

[39]

[41]

[42]

[44]

Bibliography B 29

Jacob Ratkiewicz, Michael Conover, Mark Meiss, Bruno
Gonffalves, Alessandro Flammini, and Filippo Menczer. Detecting
and tracking political abuse in social media. In ICWSM, 2011.

Jacob Ratkiewicz, Michael Conover, Mark Meiss, Bruno
Gonffalves, Snehal Patil, Alessandro Flammini, and Filippo
Menczer. Truthy: mapping the spread of astroturf in microblog
streams. In Proceedings of the 20th international conference com-
panion on World wide web, pages 249-252. ACM, 2011.

Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert
Chansler. The hadoop distributed file system. In Mass Storage
Systems and Technologies (MSST), 2010 IEEE 26th Symposium
on, pages 1-10. IEEE, 2010.

Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao,
Prasad Chakka, Suresh Anthony, Hao Liu, Pete Wyckoff, and
Raghotham Murthy. Hive: a warehousing solution over a
map-reduce framework. Proceedings of the VLDB Endowment,
2(2):1626-1629, 2009.

Onur Varol, Emilio Ferrara, Christine L Ogan, Filippo Menczer,
and Alessandro Flammini. Evolution of online user behavior dur-
ing a social upheaval. In Proceedings of the 2014 ACM conference
on Web science, pages 81-90. ACM, 2014.

Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason
Lowe, Hitesh Shah, Siddharth Seth, et al. Apache hadoop yarn:
Yet another resource negotiator. In Proceedings of the 4th annual
Symposium on Cloud Computing, page 5. ACM, 2013.

Tak-Lon Wu, Abhilash Koppula, and Judy Qiu. Integrating pig
with harp to support iterative applications with fast cache and cus-
tomized communication. In Proceedings of the 5th International
Workshop on Data-Intensive Computing in the Clouds, pages 33—
39. IEEE Press, 2014.

Reynold S Xin, Josh Rosen, Matei Zaharia, Michael J Franklin,
Scott Shenker, and Ion Stoica. Shark: Sql and rich analytics at
scale. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of data, pages 13-24. ACM, 2013.

30 W Bibliography

[45] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur

[46]

Dave, Justin Ma, Murphy McCauley, Michael J Franklin, Scott
Shenker, and Ton Stoica. Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing. In Proceed-
ings of the 9th USENIX conference on Networked Systems Design
and Implementation, pages 2-2. USENIX Association, 2012.

Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott
Shenker, and Ion Stoica. Spark: cluster computing with working
sets. In Proceedings of the 2nd USENIX conference on Hot topics
in cloud computing, pages 10-10, 2010.

Bingjing Zhang, Yang Ruan, and Judy Qiu. Harp: Collective
communication on hadoop. In IEEE International Conference on
Cloud Engineering (IC2E) conference.

